International Journal of Clinical Pediatric Dentistry

Register      Login

VOLUME 14 , ISSUE 6 ( November-December, 2021 ) > List of Articles

REVIEW ARTICLE

Recent Advances in Indirect Pulp Treatment Materials for Primary Teeth: A Literature Review

Afnan M Saber, Sumer M Alaki

Citation Information : Saber AM, Alaki SM. Recent Advances in Indirect Pulp Treatment Materials for Primary Teeth: A Literature Review. Int J Clin Pediatr Dent 2021; 14 (6):795-801.

DOI: 10.5005/jp-journals-10005-2073

License: CC BY-NC 4.0

Published Online: 06-01-2021

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

Aim: To provide an overview of the techniques of indirect pulp treatment (IPT) and the new materials used. Background: Indirect Pulp Treatment (IPT) is a conservative treatment approach that can be used in primary molars. Pulpotomy has been adopted as the treatment of choice for deep caries in primary molars. IPT showed higher success rates in recent researches. Materials and methods: Electronic search of English scientific papers was accomplished using PubMed, ScienceDirect, and Scopus. Papers published from 1995 to 2019 were included. Search terms used were recent advances, indirect pulp treatment, mineral trioxide aggregate (MTA), biodentine, TheraCal–LC, chlorhexidine gluconate (CHX), resin-modified glass ionomer (RMGI), and calcium hydroxide. Review results: Seventy two papers were obtained from the electronic search and references of selected studies. Thirty five papers explained recent advances in IPT materials for primary molars. MTA produces more dentinal bridging with superior quality than calcium hydroxide. Similarly, Biodentine can form reparative dentin in a very short period. TheraCal–LC has increased stability and durability with strong physical properties and low solubility. Furthermore, CHX is a chemical disinfectant which can aid in increasing the success rate of IPT when conjugated with other materials. It produced highly successful IPT when combined with RMGI or calcium hydroxide. Conclusion: IPT is the preferred treatment approach for preservation of primary dentition. CHX is an emerging material that can provide promising results in IPT when combined with other materials. Clinical significance: Up to date, no material had replaced the popular use of calcium hydroxide in IPT. The use of CHX with RMGI can increase the success rate while preserving the advantages of the latter as it is considered the liner of choice for primary teeth, making IPT a suitable substitute for pulpotomy in primary molars.


HTML PDF Share
  1. Seale N. Indirect pulp therapy: an alternative to pulpotomy in primary teeth. Tex Dent J 2010;127(11):1175–1183.
  2. Law C. Management of premature primary tooth loss in the child patient. J Calif Dent Assoc 2013;41(8):612–618.
  3. AAPD. Guideline on pulp therapy for primary and immature permanent teeth. Pediatr Dent 2019;40(6):343–351.
  4. Seale N, Coll J. Vital pulp therapy for primary dentition. Gen Dent 2010;58(3):194–200.
  5. Coll JA. Indirect pulp capping and primary teeth: is the primary tooth pulpotomy out of date? J Endod 2008;34(7 Suppl):S34–S39. DOI: 10.1016/j.joen.2008.02.033
  6. Pathak S, Bansode P, Wavdhane M, et al. Advances in pulp capping materials: a review. IOSR–JDMS 2017;16(2):31–37. DOI: 10.9790/0853-1602073137
  7. Monea M, Mihai P, Stoica A, et al. Histologic evaluation of tertiary dentine after indirect pulp capping procedures. Key Eng Mater 2016;695:260–263. DOI: 10.4028/www.scientific.net/kem.695.260
  8. Milosevic A. Calcium hydroxide in restorative dentistry. J Dent 1991;19(1):3–13. DOI: 10.1016/0300-5712(91)90028-W
  9. George V, Janardhanan S, Varma B, et al. Clinical and radiographic evaluation of indirect pulp treatment with MTA and calcium hydroxide in primary teeth (in–vivo study). J Indian Soc Pedod Prev Dent 2015;33(2):104–110. DOI: 10.4103/0970-4388.155118
  10. Rosenberg L, Atar M, Daronch M, et al. Prospective study of indirect pulp treatment in primary molars using resin–modified glass ionomer and 2% chlorhexidine gluconate: a 12–month follow–up. Pediatr Dent 2013;35(1):13–17.
  11. Singhal M, Chaudhary C, Anand R, Singh N, Sahni T. Recent advancements of indirect pulp capping in primary teeth: a review. J Adv Med Dent Scie Res 2015;3(5):S78–S82.
  12. Venkatesh Babu N, Kavyashree B, Amitha H. Comparative assessment of success rate of indirect pulp treatment with 2% chlorhexidine gluconate disinfecting solution, calcium hydroxide and resin modified glass ionomer liner in primary teeth – A Prospective Study. IOSR–JDMS 2016;15(2):45–53. DOI: 10.9790/0853-15234553
  13. Boddeda K, Rani C, V Vanga N, et al. Comparative evaluation of biodentine, 2% chlorhexidine with RMGIC and calcium hydroxide as indirect pulp capping materials in primary molars: an in vivo study. J Indian Soc Pedod Prev Dent 2019;37(1):60–66. DOI: 10.4103/jisppd.jisppd_213_17
  14. Farooq N, Coll J, Kuwabara A, et al. Success rates of formocresol pulpotomy and indirect pulp therapy in the treatment of deep dentinal caries in primary teeth. Pediatr Dent 2000;22(4):278–286.
  15. Reeves R, Stanley H. The relationship of bacterial penetration and pulpal pathosis in carious teeth. Oral Surg Oral Med Oral Pathol 1966;22(1):59–65. DOI: 10.1016/0030-4220(66)90143-5
  16. Büyükgüral B, Cehreli Z. Effect of different adhesive protocols vs calcium hydroxide on primary tooth pulp with different remaining dentin thicknesses: 24 month results. Clin Oral Investig 2008;12(1):91–96. DOI: 10.1007/s00784-007-0152-x
  17. Fuks A. Vital pulp therapy with new materials for primary teeth: new directions and treatment perspectives. J Endod 2008;34(7 Suppl):S18–S24. DOI: 10.1016/j.joen.2008.02.031
  18. Vidya K, Patil S, Anegundi R. Is pulpotomy obsolete? A clinical study on the success rates of indirect pulp capping and pulpotomy in the treatment of deep dentinal caries in primary second molars. J Int Clin Dent Res Organ 2015;7(1):24–29. DOI: 10.4103/2231-0754.153491
  19. Gopakumar R, Gopakumar M. Diagnostic aids in pediatric dentistry. Int J Clin Pediatr Dent 2011;4(1):1–7. DOI: 10.5005/jp-journals-10005-1073
  20. Olgart L, Gazelius B, Lindh–Stromberg U. Laser Doppler flowmetry in assessing vitality in luxated permanent teeth. Int Endod J 1988;21(5):300–306. DOI: 10.1111/j.1365-2591.1988.tb01139.x
  21. McComb D. Caries–detector dyes––how accurate and useful are they? J Can Dent Assoc 2000;66(4):195–198.
  22. Duque C, Negrini Tde C, Hebling J, Spolidorio D. Inhibitory activity of glass–ionomer cements on cariogenic bacteria. Oper Dent 2005;30(5):636–640.
  23. Peskersoy C, Turkun M, Onal B. Comparative clinical evaluation of the efficacy of a new method for caries diagnosis and excavation. J Conserv Dent 2015;18(5):364–368. DOI: 10.4103/0972-0707.164032
  24. Lee S, Monsef M, Torabinejad M. Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J Endod 1993;19(11):541–544. DOI: 10.1016/S0099-2399(06)81282-3
  25. Srinivasan V, Waterhouse P, Whitworth J. Mineral trioxide aggregate in paediatric dentistry. Int J Paediatr Dent 2009;19(1):34–47. DOI: 10.1111/j.1365-263X.2008.00959.x
  26. Nandini S, Ballal S, Kandaswamy D. Influence of glass Ionomer cement on the interface and setting reaction of mineral trioxide aggregate when used as a furcal repair material using laser Raman spectroscopic analysis. J Endod 2007;33(2):167–172.
  27. Torabinejad M, Hong C, Pitt Ford T, et al. Antibacterial effects of some root end filling materials. J Endod 1995;21(8):403–406. DOI: 10.1016/s0099-2399(06)80824-1
  28. Macwan C, Deshpande A. Mineral trioxide aggregate (MTA) in dentistry: a review of literature. J Oral Res Rev 2014;6(2):71–74. DOI: 10.4103/2249-4987.152914
  29. Asgary S, Parirokh M, Egbbal M, et al. Chemical differences between white and gray mineral trioxide aggregate. J Endod 2005; 31(2):101–103. DOI: 10.1097/01.don.0000133156.85164.b2
  30. Storm B, Eichmiller F, Tordik P, et al. Setting expansion of gray and white mineral trioxide aggregate and Portland cement. J Endod 2008;34(1):80–82. DOI: 10.1016/j.joen.2007.10.006
  31. Sumer M, Muglali M, Bodrumlu E, et al. Reactions of connective tissue to amalgam, intermediate restorative material, mineral trioxide aggregate mixed with chlorhexidine. J Endod 2006; 32(11):1094–1096. DOI: 10.1016/j.joen.2006.05.012
  32. Al-Hezaimi K, Al-Shalan TA, Naghshbandi J, et al. Antibacterial effect of two mineral trioxide aggregate (MTA) preparations against Enterococcus faecalis and Streptococcus sanguis in vitro. J Endod 2006;32(11):1053–1056. DOI: 10.1016/j.joen.2006.06.004
  33. Jain A, Gupta A, Agarwal R. Comparative evaluation of the antibacterial activity of two Biocompatible materials i.e. Biodentine and MTA when used as a direct pulp capping agent against streptococcus mutans and Enterococcus faecalis– an in vitro study. Endodontology 2018;30(1):66–68. DOI: 10.4103/endo.endo_66_17
  34. Torabinejad M, Chivian N. Clinical applications of mineral trioxide aggregate. J Endod 1999;25(3):197–205. DOI: 10.1016/S0099-2399(99)80142-3
  35. Schmitt D, Lee J, Bogen G. Multifaceted use of ProRoot MTA root canal repair material. Pediatr Dent 2001;23(4):326–330.
  36. Malhotra N, Agarwal A, Mala K. Mineral Trioxide Aggregate: A Review of Physical Properties. Compend Contin Educ Dent 2013;34(2):e25–e32.
  37. Luczaj–Cepowicz E, Marczuk–Kolada G, Pawińska M, et al. Comparison of the radiopacity of selected materials used for vital pulp therapy: An in vitro assessment. Dent Med Probl 2019;56(3):285–290. DOI: 10.17219/dmp/109550
  38. Mathur V, Dhillon J, Logani A, et al. Evaluation of indirect pulp capping using three different materials: a randomized control trial using cone–beam computed tomography. Indian J Dent Res 2016;27(6):623–629. DOI: 10.4103/0970-9290.199588
  39. Menon N, Varma B, Janardhanan S, et al. Clinical and radiographic comparison of indirect pulp treatment using light–cured calcium silicate and mineral trioxide aggregate in primary molars: a randomized clinical trial. Contemp Clin Dent 2016;7(4):475–480. DOI: 10.4103/0976-237X.194109
  40. Chauhan A, Dua P, Saini S, et al. In vivo outcomes of indirect pulp treatment in primary posterior teeth: 6 months’ follow–up. Contemp Clin Dent 2018;9(Suppl 1):S69-S73. DOI: 10.4103/ccd.ccd_48_18
  41. Torabinejad M, Hong C, McDonald F, et al. Physical and chemical properties of a new root–end filing material. J Endod 1995;21(7):349–353. DOI: 10.1016/S0099-2399(06)80967-2
  42. Arora V, Nikhil V, Sharma N, et al. Bioactive dentin replacement. IOSR–JDMS 2013;12(4):51–57. DOI: 10.9790/0853-1245157
  43. Kaur M, Singh H, Dhillon J, et al. MTA versus Biodentine: Review of literature with a comparative analysis. J Clin Diagn Res 2017;11(8):ZG01–ZG05. DOI: 10.7860/JCDR/2017/25840.10374
  44. Laurent P, Camps J, About I. Biodentin induces TGF–β1 release from human pulp cells and early dental pulp mineralization. Int Endod J 2012;45(5):439–448. DOI: 10.1111/j.1365-2591.2011.01995.x
  45. Kim J, Song Y, Min K, et al. Evaluation of reparative dentin formation of ProRoot MTA, biodentine and bio–aggregate using micro–CT and immunohistochemistry. Restor Dent Endod 2016;41(1):29–36. DOI: 10.5395/rde.2016.41.1.29
  46. Sarkar N, Caicedo R, Ritwik P, et al. Physiochemical basis of the biologic properties of mineral trioxide aggregate. J Endod 2005;31(2): 97–100. DOI: 10.1097/01.don.0000133155.04468.41
  47. Willems G, Lambrechts P, Braem M, et al. Composite resins in the 21st century. Quintessence Int 1993;24(9):641–658. DOI: 10.7860/JCDR/2014/7834.4174
  48. Ravichandra P, Vemisetty H, Deepthi K, et al. Comparative evaluation of marginal adaptation of biodentine and other commonly used root end filling materials – an in vitro study. J Clin Diagn Res 2014;8(3):243–245.
  49. Garrocho–Rangel A, Quintana–Guevara K, Vázquez–Viera R, et al. Bioactive tricalcium silicate–based dentin substitute as an indirect pulp capping material for primary teeth: a 12–month follow–up. Pediatr Dent 2017;39(5):377–382.
  50. Hebling J, Lessa F, Nogueira I, et al. Cytotoxicity of resin–based light–cured liners. Am J Dent 2009;22(3):137–142.
  51. Gandolfi M, Siboni F, Prati C. Chemical–physical properties of TheraCal, a novel light–curable MTA– like material for pulp capping. Int Endod J 2012;45(6):571–579. DOI: 10.1111/j.1365-2591.2012.02013.x
  52. Dawood A, Parashos P, Wong R, et al. Calcium silicate–based cements: composition, properties, and clinical applications. J Investig Clin Dent 2017;8(2):1–15. DOI: 10.1111/jicd.12195
  53. Qureshi A, Soujanya E, Nandakumar, et al. Recent advances in pulp capping materials– an Overview. J Clin Diagn Res 2014;8(1):316–321. DOI: 10.7860/JCDR/2014/7719.3980
  54. Poggio C, Arciola CR, Beltrami R, et al. Cytocompatibility and antibacterial properties of capping materials. ScientificWorldJournal 2014:181945. DOI: 10.1155/2014/181945
  55. Nielsen M, Casey J, Vander Weele R, et al. Mechanical properties of new dental pulp–capping materials. Gen Dent 2016;64(1):44–48. DOI: 10.23804/ejpd.2019.20.02.04
  56. Gurcan A, Seymen F. Clinical and radiographic evaluation of indirect pulp capping with three different materials: a 2–year follow–up study. Eur J Paediatr Dent 2019;20(2):105–110.
  57. Leonardo M, Tanomaru Filho M, Silva L, et al. In vivo antimicrobial activity of 2% chlorhexidine used as a root canal irrigating solution. J Endod 1999;25(3):167–171. DOI: 10.1016/s0099-2399(99)80135-6
  58. Zeng P, Rao A, Wiedmann T, et al. Solubility properties of chlorhexidine salts. Drug Dev Ind Pharm 2009;35(2):172–176. DOI: 10.1080/03639040802220318
  59. Padiyar B, Marwah N, Gupta S, et al. Comparative evaluation of effects of triphala, garlic extracts, and chlorhexidine mouthwashes on salivary Streptococcus mutans counts and oral hygiene status. Int J Clin Pediatr Dent 2018;11(4):299–306. DOI: 10.5005/jp-journals-10005-1530
  60. Markowska K, Anna M, Wolska G. Silver nanoparticles as an alternative strategy against bacterial biofilms– review. Acta Biochim Pol 2013;60(4):523–530.
  61. Rôças IN, Siqueira JF Jr. Comparison of the in vivo antimicrobial effectiveness of sodium hypochlorite and chlorhexidine used as root canal irrigants: a molecular microbiology study. J Endod 2011;37(2):143–150. DOI: 10.1016/j.joen.2010.11.006
  62. AAPD. Guideline on pediatric restorative dentistry. Pediatr Dent 2012;34(5):173–180.
  63. Seale N. The use of stainless steel crowns. Pediatr Dent. 2002;24(5):501–505.
  64. Vij R, Coll J, Shelton P, Farooq N. Caries control and other variables associated with success of primary molar vital pulp therapy. Pediatr Dent 2004;26(3):214–220.
  65. Wunsch P, Kuhnen M, Best A, Brickhouse T. Retrospective study of the survival rates of indirect pulp therapy versus different pulpotomy medicaments. Pediatr Dent 2016;38(5):406–411.
  66. Fang R, Chang K, Lin Y. Comparison of long–term outcomes between ferric sulfate pulpotomy and indirect pulp therapy in primary molars. J Dent Sci 2019;14(2):134–137. DOI: 10.1016/j.jds.2019.03.008
  67. Tawil P, Duggan D, Galicia J. Mineral trioxide aggregate (MTA): its history, composition, and clinical applications. Compend Contin Educ Dent 2015;36(4):247–252.
  68. Bogen G, Kim J, Bakland L. Direct pulp capping with mineral trioxide aggregate: an observational study. J Am Dent Assoc 2008;139(3): 305–315. DOI: 10.14219/jada.archive.2008.0160
  69. Torabinejad M, Hong C, McDonald F, et al. Physical and chemical properties of a new root–end lling material. J Endod 1995; 21(7):349–353. DOI: 10.1016/S0099-2399(06)80967-2
  70. Priyalakshmi S, Ranjan M. Review on biodentine–a bioactive dentin substitute. IOSR–JDMS 2014;13(1):13–17. DOI: 10.9790/0853-13131317
  71. Aranha A, Giro E, Souza P, et al. Effect of curing regime on the cytotoxicity of resin–modified glass–ionomer lining cements applied to an odonoblast–cell line. Dent Mater 2006; 22(9):864–869. DOI: 10.1016/j.dental.2005.11.015
  72. Kotsanos N, Arizos S. Evaluation of a resin modified glass ionomer serving both as indirect pulp therapy and as restorative material for primary molars. Eur Arch Paediatr Dent 2011;12(3):170–175. DOI: 10.1007/BF03262801
  73. Baranwal R, Singh BD, Dubey A, et al. Calcium hydroxide in dentistry. Chettinad Health City Medical Journal 2016;5(1):30–33.
  74. Trairatvorakul C, Sastararuji T. Indirect pulp treatment vs antibiotic sterilization of deep caries in mandibular primary molars. Int J Paediatr Dent 2014;24(1):23–31. DOI: 10.1111/ipd.12022
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.