International Journal of Clinical Pediatric Dentistry

Register      Login

VOLUME 14 , ISSUE S1 ( Special Issue (Pediatr Orthodont), 2021 ) > List of Articles

REVIEW ARTICLE

Efficacy of Laser Photobiomodulation in Accelerating Orthodontic Tooth Movement in Children: A Systematic Review with Meta-analysis

Chandrashekar M Yavagal, Sucheta P Matondkar, Puja C Yavagal

Keywords : Laser, Meta-analysis, Movement, Orthodontic, Photobiomodulation

Citation Information :

DOI: 10.5005/jp-journals-10005-1964

License: CC BY-NC 4.0

Published Online: 06-12-2021

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

Aim and background: This systematic review aimed to investigate the efficacy of laser photobiomodulation (PBM) on the acceleration of orthodontic tooth movement (OTM). Review methods: The study protocol was registered at PROSPERO (CRD42019121465). An extensive electronic search for randomized control trials and clinical control trials via Medline (via PubMed), The Cochrane Controlled Clinical Trials Register, and Scopus up to date 24/02/2019 was done. Hand searching was performed for relevant journals. Reference articles were retrieved and exported to Mendeley Desktop 1.13.3 software. The risk of bias was assessed using the Cochrane risk of the bias assessment tool. Articles were further analyzed using Revman5.3 software. Results: A total of 14 articles were considered for systematic review and 9 articles were considered for meta-analysis. The results of the meta-analysis showed a significant difference between the laser group and conventional orthodontic treatment with Forest plots showing more tooth movement in the laser group compared to the control group in 2–3 months (mean difference = 1.73; CI: 0.9–2.57; p = 0.00001; I2 = 89 %). Conclusion: Although the analysis of the results shows that laser PBM favors OTM, the results are inconclusive as the heterogeneity across studies was high. Clinical significance: Laser PBM may be considered as novel, safe, and noninvasive adjuvant therapy for the acceleration of OTM in children.


HTML PDF Share
  1. Li Y, Jacox L, Little S, et al. Orthodontic tooth movement: the biology and clinical implications. Kaohsiung J Med Sci 2018;34(4):207–214. DOI: 10.1016/j.kjms.2018.01.007.
  2. Talic NF. Adverse effects of orthodontic treatment: a clinical perspective. Saudi Dent J 2011;23(2):55–59. DOI: 10.1016/j.sdentj.2011.01.003.
  3. Teitelbaum SL. Bone resorption by osteoclasts. Science 2000;289(5484):1504–1508. DOI: 10.1126/science.289.5484.1504.
  4. Nanci DD. Bosshardt structure of periodontal tissues in health and disease. Periodontol 2006;40(1):11–28. DOI: 10.1111/j.1600-0757.2005.00141.x.
  5. Takano-Yamamoto T, Kawakami M, Kobayashi Y, et al. The effect of local application of 1.25-dihydroxycholecalciferol on osteoclast numbers in orthodontically treated rats. J Dent Res 1992;71(1):53–59. DOI: 10.1177/00220345920710010901.
  6. Yamasaki K, Shibata Y, Imai S, et al. Clinical application of prostaglandin E1 (PGE1) upon orthodontic tooth movement. Am J Orthod 1984;85(6):508–518. DOI: 10.1016/0002-9416(84)90091-5.
  7. Kobayashi Y, Takagi H, Sakai H, et al. Effects of local administration of osteocalcin on experimental tooth movement. Angle Orthod 1998;68(3):259–266. DOI: 10.1043/0003-3219(1998)0682.3.CO;2.
  8. Hopkins JT, McLoda TA, Seegmiller JG, et al. Low level laser therapy facilitates superficial wound healing in humans: a triple blind, sham controlled study. J Athl Train 2004;39(3):226–229.
  9. Chung H, Dai T, Sharma SK, et al. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 2012;40(2):516–533. DOI: 10.1007/s10439-011-0454-7.
  10. Lopes CB, Pinheiro AL, Sathaiah S, et al. Infrared laser photobiomodulation (lambda 830 nm) on bone tissue around dental implants: a Raman spectroscopy and scanning electronic microscopy study in rabbits. Photomed Laser Surg 2007;25(2):96–101. DOI: 10.1089/pho.2006.2030.
  11. Hamblin MR, Demidova TN. Mechanisms of low level light therapy. In mechanisms for low-light therapy. Int Soc Optics Photon 2006;6140:614001.
  12. Isola G, Matarese M, Briguglio F, et al. Effectiveness of low-level laser therapy during tooth movement: a randomized clinical trial. Materials (Basel) 2019;12(13):2187. DOI: 10.3390/ma12132187.
  13. Storey E. The nature of tooth movement. Am J Orthod 1973;63(3):292–314. DOI: 10.1016/0002-9416(73)90353-9.
  14. Higgins JPT, Green S, ed., Cochrane Handbook for Systematic Reviews of Interventions, Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from www.handbook.cochrane.org.
  15. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 2010;8(5):336–341. DOI: 10.1016/j.ijsu.2010.02.007.
  16. Page MJ, Shamseer L, Tricco AC. Registration of systematic reviews in PROSPERO: 30,000 records and counting. Syst Rev 2018;7(1):32. DOI: 10.1186/s13643-018-0699-4.
  17. Patak AA, Naim HA, Hidayat R. Taking Mendeley as multimedia-based application in academic writing. Int J Adv Sci, Engineer Informat Technol 2016;6(4):557–560. DOI: 10.18517/ijaseit.6.4.890.
  18. Higgins JP, Altman DG, Gøtzsche PC, et al. The Cochrane collaboration's tool for assessing risk of bias in randomised trials. BMJ 2011;343(oct18 2):d5928. DOI: 10.1136/bmj.d5928.
  19. Review Manager (RevMan) [Computer program]. Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014.
  20. Cruz D, Kohara E, Ribeiro M, et al. Effects of low-intensity laser therapy on the orthodontic movement velocity of human teeth: a preliminary study. Lasers Surg Med 2004;35(2):117–120. DOI: 10.1002/lsm.20076.
  21. Limpanichkul W, Godfrey K, Srisuk N, et al. Effects of low-level laser therapy on the rate of orthodontic tooth movement. Orthod Craniofac Red 2000;9(1):38–43. DOI: 10.1111/j.1601-6343.2006.00338.x.
  22. Youssef M, Ashkar S, Hamade E, et al. The effect of low-level laser therapy during orthodontic movement: a preliminary study. Lasers Med Sci 2008;23(1):27–33. DOI: 10.1007/s10103-007-0449-7.
  23. da Silva Sousa MV, Scanavini MA, Sannomiya EK, et al. Influence of low-level laser on the speed of orthodontic movement. Photomed Laser Surg 2011;29(3):191–196. DOI: 10.1089/pho.2009.2652.
  24. Doshi-Mehta G, Bhad-Patil W. Efficacy of low-intensity laser therapy in reducing treatment time and orthodontic pain: a clinical investigation. Am J Orthod Dentofacial Orthop 2012;141(3):289–297. DOI: 10.1016/j.ajodo.2011.09.009.
  25. Genc G, Kocadereli I, Tasar F, et al. Effect of low-level laser therapy (LLLT) on orthodontic tooth movement. Lasers Med Sci 2013;28(1):41–47. DOI: 10.1007/s10103-012-1059-6.
  26. Dominguez A, Gomez C, Palma J. Effects of low-level laser therapy on orthodontics: rate of tooth movement, pain, and release of RANKL and OPG in GCF. Lasers Med Sci 2015;30(2):915–923. DOI: 10.1007/s10103-013-1508-x.
  27. Heravi F, Moradi A, Ahrari F. The effect of low level laser therapy on the rate of tooth movement and pain perception during canine retraction. Oral Health Dent Manag 2014;13(2):183–188.
  28. Dalaie K, Hamedi R, Kharazifard MJ, et al. Effect of low-level laser therapy on orthodontic tooth movement: a clinical investigation. J Dent (Tehran) 2015;12(4):249–256.
  29. Moaffak MA, Hasan A, Sultan K, et al. Low-level laser therapy effectiveness in accelerating orthodontic tooth movement: A randomized controlled clinical trial. Angle Orthod 2017;87(4):499–504. DOI: 10.2319/062716-503.1.
  30. Kochar GD, Londhe SM, Varghese B, et al. Effect of low level laser therapy on orthodontic tooth movement. J Indian Orthod Soc 2017;51(2):81–86. DOI: 10.4103/jios.jios_200_16.
  31. Qamruddin I, Alam MK, Mahroof V, et al. Effects of low-level laser irradiation on the rate of orthodontic tooth movement and associated pain with self ligating brackets. Am J Orthod Dentofacial Orthop 2017 Nov;152(5):622–630. DOI: 10.1016/j.ajodo.2017.03.023.
  32. Guram G, Reddy RK, Dharamsi AM, et al. Evaluation of low-level laser therapy on orthodontic tooth movement: A randomized control study. Contemp Clin Dent 2018;9(1):105–109. DOI: 10.4103/ccd.ccd_864_17.
  33. Matarese G, Matarese M, Picciolo G, et al. Evaluation of low-level laser therapy with diode laser for the enhancement of the orthodontic tooth movement: a split-mouth study. Preprints 2018;2018090273. DOI: 10.20944/preprints201809.0273.v1..
  34. Imani MM, Golshah A, Safari-Faramani R, et al. Effect of low-level laser therapy on orthodontic movement of human canine: a systematic review and meta-analysis of randomized clinical trials. Acta Informatica Medica 2018;26(2):139. DOI: 10.5455/aim.2018.26.139-143.
  35. Carvalho-Lobato P, Garcia VJ, Kasem K, et al. Tooth movement in orthodontic treatment with low-level laser therapy: a systematic review of human and animal studies. Photomed Laser Surg 2014;32(5):302–309. DOI: 10.1089/pho.2012.3439.
  36. Goulart CS, Nouer PRA, Mouramartins R, et al. Photoradiation and orthodontic movement: Experimental study with canines. Photomed Laser Surg 2006;24(2):192–196. DOI: 10.1089/pho.2006.24.192.
  37. Seifi M, Shafeei HA, Daneshdoost S, et al. Effects of two types of low-level laser wavelengths (850 and 630 nm) on the orthodontic tooth movements in rabbits. Lasers Med Sci 2007;22(4):261–264. DOI: 10.1007/s10103-007-0447-9.
  38. Kim Y-D, Kim S-S, Kim S-J, et al. Low-level laser irradiation facilitates fibronectin and collagen type I turnover during tooth movement in rats. Lasers Med Sci 2010;25(1):25–31. DOI: 10.1007/s10103-008-0585-8.
  39. Cepera F, Torres FC, Scanavini MA, et al. Effect of a low-level laser on bone regeneration after rapid maxillary expansion. AJODO 2012;141(4):444–450. DOI: 10.1016/j.ajodo.2011.10.023.
  40. Marques M, Pereira A, Fujihara N, et al. Effect of low-power laser irradiation on protein synthesis and ultrastructure of human gingival fibroblasts. Lasers Surg Med 2004;34(3):260–265. DOI: 10.1002/lsm.20008.
  41. Altan B, Sokucu O, Ozkut M. Metrical and histological investigation of the effects of low level laser therapy on orthodontic tooth movement. Lasers Med Sci 2012;27(1):131–140. DOI: 10.1007/s10103-010-0853-2.
  42. Yamaguchi M. Low-energy laser irradiation stimulates the tooth movement velocity via expression of M-CSF and c-fms. Orthodontic Waves 2007;66(4):139–148. DOI: 10.1016/j.odw.2007.09.002.
  43. Aihara N, Yamaguchi M, Kasai K. Low-energy irradiation stimulates formation of osteoclast-like cells via RANK expression in vitro. Lasers Med Sci 2006;21(1):24–33. DOI: 10.1007/s10103-005-0368-4.
  44. Hadis MA, Zainal SA, Holder MJ, et al. The dark art of light measurement: accurate radiometry for low-level light therapy. Lasers Med Sci 2016;31(4):789–809. DOI: 10.1007/s10103-016-1914-y.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.