International Journal of Clinical Pediatric Dentistry

Register      Login

VOLUME 14 , ISSUE S1 ( Special Issue (Pediatr Orthodont), 2021 ) > List of Articles

REVIEW ARTICLE

Digitainers—Digital Space Maintainers: A Review

Kiran GS Dhanotra, Rupinder Bhatia

Keywords : 3D printing, CAD/CAM, Digital technology, Pediatric dentistry, Space maintainers

Citation Information :

DOI: 10.5005/jp-journals-10005-2040

License: CC BY-NC 4.0

Published Online: 27-12-2021

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

To summarize the limitations of commonly used space maintainers (SMs) and provide an insight into the field's technological advances to overcome them, this review was conducted. With the rapid advancement of digital technologies, there is always something new to learn while also redefining the current fads. Digital workflow is not a new concept in dentistry, but it has only just begun to be used in pediatric dentistry. The curiosity to explore has led to the development of digital devices as SMs. They appear potential for usage in children because of their impressive advantages of precision, comfort, and a time-saving approach. This workflow helps lessen fear and improve children's cooperation and enthusiasm for dental appointments by cutting down on chairside time and shortening procedures.


HTML PDF Share
  1. Barberia E, Lucavechi T. Free end space maintainers: design utilisation and advantages. J Clin Pediatr Dent 2006;31(1):5–8. DOI: 10.17796/jcpd.31.1.p87112173240x80m.
  2. Tunison W, Flores-Mir C, ElBadrawy H, et al. Dental arch space changes following premature loss of primary first molars: a systematic review. Pediatr Dent 2008;30(4):297–302.
  3. Brothwell DJ. Guidelines on the use of space maintainers following premature loss of primary teeth. J Can Dent Assoc 1997;63(10):753–766.
  4. Bijoor RR, Kohli K. Contemporary space maintenance for the pediatric patient. N Y State Dent J 2005;71(2):32–35.
  5. American Academy of Pediatric Dentistry. Management of the developing dentition and occlusion in pediatric dentistry. The reference manual of pediatric dentistry. Chicago, Ill: American Academy of Pediatric Dentistry; 2020. pp. 393–409.
  6. Christensen JR, Fields HW. Space maintenance in the primary dentition. In: Casamassimo SP, Fields HW, McTigue DJ, et al., ed. Pediatric dentistry – infancy through adolescence. 5th edn., St. Louise, MO: Elsevier Inc.; 2013. p. 379.
  7. Arikan V, Kizilci E, Ozalp N, et al. Effects of fixed and removable space maintainers on plaque accumulation, periodontal health, candidal and Enterococcus faecalis carriage. Med Princ Pract 2015;24(4):311. DOI: 10.1159/000430787.
  8. Hosseinipour ZS, Poorzandpoush K, Heidari A, et al. Assessment of periodontal parameters following the use of fixed and removable space maintainers in 6-12-year olds. Int J Clin Pediatr Dent 2019;12(5):405–409. DOI: 10.5005/jp-journals-10005-1606.
  9. Kundu R, Tripathi AM, Jaiswal JN, et al. Effect of fixed space maintainers and removable appliances on oral microflora in children: an in vivo study. J Indian Soc Pedod Prev Dent 2016;34(1):3–9. DOI: 10.4103/0970-4388.175498.
  10. Feasby WH, Ecclestone ER, Grainger RM. Nickel sensitivity in pediatric dental patients. Pediatr Dent 1988;10(2):127–129.
  11. Kulkarni P, Agrawal S, Bansal A, et al. Assessment of nickel release from various dental appliances used routinely in pediatric dentistry. Indian J Dent 2016;7(2):81–85. DOI: 10.4103/0975-962X.184649.
  12. Bhaskar V, Subba, Reddy VV. Biodegradation of nickel and chromium from space maintainers: an in vitro study. J Indian Soc Pedod Prev Dent 2010;28(1):6–12. DOI: 10.4103/0970-4388.60484.
  13. Simsek S, Yilmaz Y, Gurbuz T. Clinical evaluation of simple fixed space maintainers bonded with flowable composite resin. J Dent Child 2004;71(2):163–168.
  14. Millett DT, McCabe JF, Bennett TG, et al. The effect of sandblasting on the retention of first molar orthodontic bands cemented with glass ionomer cement. Br J Orthod 1995;22(2):161–169. DOI: 10.1179/bjo.22.2.161.
  15. Baroni C, Franchini A, Rimondini L. Survival of different types of space maintainers. Pediatr Dent 1994;16(5):360–361.
  16. Qudeimat MA, Fayle SA. The longevity of space maintainers: a retrospective study. Pediatr Dent 1998;20(4):267–272.
  17. Fathian M, Kennedy DB, Nouri MR. Laboratory-made space maintainers: a 7-year retrospective study from private pediatric dental practice. Pediatr Dent 2007;29(6):500–506.
  18. Sasa IS, Hasan AA, Qudeimat MA. Longevity of band and loop space maintainers using glass ionomer cement: a prospective study. Eur Archi Pediat Dentis 2009;10(1):6–10. DOI: 10.1007/BF03262659.
  19. Tunc ES, Bayrak S, Tuloglu N, et al. Evaluation of survival of 3 different fixed space maintainers. Pediatr Dent 2012;34:97–102.
  20. Nidhi C, Jain RL, Neeraj M, et al. Evaluation of the clinical efficacy of glass fiber reinforced composite resin as a space maintainer and its comparison with the conventional band and loop space maintainer. An in vivo study. Minerva Stomatol 2012;61(1-2):21–30.
  21. Chandra H, Krishnamoorthy S, Johnson J, et al. ILL effects of conventional band and loop space maintainers: time to revolutionise. Int Dent Med J Adv Res 2018;4(1):1–3. DOI: 10.15713/ins.idmjar.83.
  22. Rajab LD. Clinical performance and survival of space maintainers: evaluation over a period of 5 years. ASDC J Dent Child 2002;69(2):156–160, 124.
  23. Moore TR, Kennedy DB. Bilateral space maintainers: a 7-year retrospective study from private practice. Pediatr Dent 2006;28(6):499–505.
  24. Tahririan D, Safaripour M, Eshghi A, et al. Comparison of the longevity of prefabricated and conventional band and loops in children's primary teeth. Dent Res J (Isfahan) 2019;16(6):428–434. DOI: 10.4103/1735-3327.270784.
  25. Kargul B, Caglar E, Kabalay U. Glass fiber-reinforced composite resin as fixed space maintainers in children: 12-month clinical follow-up. J Dent Child (Chic) 2005;72(3):109–112.
  26. Saravanakumar MS, Siddaramayyal J, Gugnanai N, et al. Fiber technology in space maintainer: a clinical follow-up study. J Contemp Dent Pract 2013;14(6):1070–10755. DOI: 10.5005/jp-journals-10024-1453.
  27. Kirzioglu Z, Çiftçi ZZ, Yetis CÇ. Clinical success of fiber-reinforced composite resin as a space maintainer. J Contemp Dent Pract 2017;18(3):188–193. DOI: 10.5005/jp-journals-10024-2014.
  28. Subramaniam P, Babu G, Sunny R. Glass fiber-reinforced composite resin as a space maintainer: a clinical study. J Indian Soc Pedod Prev Dent 2008;26(Suppl 3):S98–S103.
  29. Garg A, Samadi F, Jaiswal JN, et al. ‘Metal to resin’: a comparative evaluation of conventional band and loop space maintainer with the fiber reinforced composite resin space maintainer in children. J Indian Soc Pedod Prev Dent 2014;32(2):111–116. DOI: 10.4103/0970-4388.130783.
  30. Zachrisson BU. Clinical experience with direct bonding in orthodontics. Am J Orthod 1977;71(4):440–448. DOI: 10.1016/0002-9416(77)90247-0.
  31. Setia V, Kumar Pandit I, Srivastava N, et al. Banded vs bonded space maintainers: finding better way out. Int J Clin Pediatr Dent 2014;7(2):97–104. DOI: 10.5005/jp-journals-10005-1245.
  32. Demirel A, Bezgin T, Akaltan F, et al. Resin nanoceramic CAD/CAM restoration of the primary molar: 3-year follow-up study. Case Rep Dent 2017;2017:3517187. DOI: 10.1155/2017/3517187.
  33. Bilgin M, Erdem A, Tanrıver M. CAD/CAM endocrown fabrication from a polymer-infiltrated ceramic network block for primary molar: a case report. J Clin Pediat Dentis 2016;40(4):264–268. DOI: 10.17796/1053-4628-40.4.264.
  34. Halal R, Nohra J, Akel H. Conservative anterior treatment with CAD-CAM technology and polymer-infiltrated ceramic for a child with amelogenesis imperfecta: a 2-year follow up. J Prosthet Dent 2018;119(5):710–712. DOI: 10.1016/j.prosdent.2017.07.018.
  35. Yilmaz H, Aydin MN. Digital versus conventional impression method in children: Comfort, preference and time. Int J Paediatr Dent. 2019 Nov;29(6):728–735. DOI: 10.1111/ipd.12566. Epub 2019 Aug 13. PMID: 31348834.
  36. Georgieva M, Dimitrov E, Andreeva R, et al. Use of CAD/CAM technologies in pediatric dentistry. Scripta Scient Med Dent 2017;3(2):23. DOI: 10.14748/ssmd.v3i2.4306.
  37. Rigby RB. Polyetheretherketone. In: Margolis JM, ed. Engineering thermoplastics: properties and applications. New York: Marcel Dekker, Inc; 1985. pp. 299–314.
  38. Stawarczyk B, Beuer F, Wimmer T, et al. Polyetheretherketone-a suitable material for fixed dental prostheses? J Biomed Mater Res B Appl Biomater 2013;101(7):1209–1216. DOI: 10.1002/jbm.b. 32932.
  39. Maekawa M, Kanno Z, Wada T, et al. Mechanical properties of orthodontic wires made of super engineering plastic. Dent Mater J 2015;34(1):114–119. DOI: 10.4012/dmj.2014-202.
  40. Ierardo G, Luzzi V, Lesti M, et al. PEEK polymer in orthodontics: a pilot study on children. J Clin Exp Dent 2017;9(10):e1271–e1275. DOI: 10.4317/jced.54010.
  41. Kun J, Dinggui Z, Wei L, et al. Clinical application of digital space maintainer fabricated by polyetherketoneketone for premature loss of deciduous teeth [J/CD]. Chin J Stomatol 2019;13:368–372.
  42. Guo H, Wang Y, Zhao Y, et al. Computer-aided design of polyetheretherketone for application to removable pediatric space maintainers. BMC Oral Health 2020;20(1). DOI: 10.1186/s12903-020-01184-6.
  43. What is BruxZir Solid Zirconia? View Technical Information. [Internet]. BruxZir. 2021 [cited 19 February 2021]. Available from: https://bruxzir.com/technical-information).
  44. Soni HK. Application of CAD-CAM for fabrication of metal-free band and loop space maintainer. J Clin Diagn Res 2017;11(2):ZD14–ZD16. DOI: 10.7860/JCDR/2017/23459.9246.
  45. Trilor® – The most innovative technopolymer for dental prosthesis [Internet]. Dentist Channel Online. 2021 [cited 19 February 2021]. Available from: https://dentistchannel.online/2020/02/22/trilor-the-most-innovative-technopolymer-for-dental-prosthesis/).
  46. Beretta M, Cirulli N. Metal free space maintainer for special needs patients. Adv Dentis Oral Health 2017;6(2). DOI: 10.19080/ADOH.2017.06.555683.
  47. Fasbinder DJ. Clinical performance of chairside CAD/CAM restorations. J Am Dent Assoc 2006;137(suppl):22S–31S. DOI: 10.14219/jada.archive.2006.0395.
  48. Christensen GJ. Impressions are changing: deciding on conventional, digital or digital plus in-office milling. J Am Dent Assoc 2009;140(10):1301–1304. DOI: 10.14219/jada.archive.2009.0054.
  49. Fasbinder DJ. The CEREC system: 25 years of chairside CAD/CAM dentistry. J Am Dent Assoc 2010;141(suppl 2):3S–4S. DOI: 10.14219/jada.archive.2010.0354.
  50. Beuer F, Schweiger J, Edelhof FD. Digital dentistry; an overview of recent developments for CAD/CAM generated restorations. Br Dent J 2008;204(9):505–511. DOI: 10.1038/sj.bdj.2008.350.
  51. Pawar B. Maintenance of space by innovative three-dimensional-printed band and loop space maintainer. J Indian Soc Pedod Prevent Dentis 2019;37(2):205. DOI: 10.4103/JISPPD.JISPPD_9_19.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.