International Journal of Clinical Pediatric Dentistry

Register      Login

VOLUME 14 , ISSUE 5 ( September-October, 2021 ) > List of Articles

RESEARCH ARTICLE

A Scanning Electron Microscopic Study on Effect of Blood and Artificial Salivary Contamination on Marginal Adaptation of Mineral Trioxide Aggregate, When Used as a Retrograde Filling Material: An In Vitro Study

Anuja Mody, Ruchi Arora, Prabhav Chauhan, Kompal Gautam, Pratibha Taneja, CM Marya

Keywords : Biocompatibility, Intravenous fluids, Mineral trioxide aggregate, Retrograde filling

Citation Information : Mody A, Arora R, Chauhan P, Gautam K, Taneja P, Marya C. A Scanning Electron Microscopic Study on Effect of Blood and Artificial Salivary Contamination on Marginal Adaptation of Mineral Trioxide Aggregate, When Used as a Retrograde Filling Material: An In Vitro Study. Int J Clin Pediatr Dent 2021; 14 (5):674-680.

DOI: 10.5005/jp-journals-10005-2012

License: CC BY-NC 4.0

Published Online: 20-11-2021

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

Aim and objective: The present study was conducted to evaluate the marginal adaptability of mineral trioxide aggregate (MTA) as a root-end filling material when manipulated using two different IV fluids intended for pediatric usage; in the presence of blood and salivary contamination. Materials and methods: Sixty single-rooted teeth were selected. Conventional endodontic root canal preparation was performed on all specimens followed by root-end resection and retrograde cavity preparation. The roots were randomly divided into two groups (n = 30). In the specimens of group I, fresh blood was used as a contaminant and in group II artificial saliva was used as a contaminant. In both groups, MTA (e-MTA, Kids-e-Dental®) manipulated using either Ringer's lactate IV fluid (n = 15) or Tetraspan IV fluid (n = 15) was used for root-end filling in blood or artificial saliva-coated retrocavities. Furthermore, these roots were placed in beakers pooled with fresh phlebotomized blood or artificial saliva. After incubating for 48 hours, the roots were divided longitudinally to expose the retrofilled cavities and were then sputter-coated with gold-platinum dust. To assess the marginal adaptation of MTA to radicular dentin “maximum gap width” and “gap perimeter” were measured in images obtained from scanning electron microscopy of root specimens. SPSS 21 was employed for statistical analysis at (p < 0.05). Mann–Whitney U test and ANOVA were used for analyzing the data obtained. Results: The gap width was more among samples exposed to blood (p < 0.05) than artificial saliva. No significant difference was reported in the gap perimeter when cavities were filled with MTA mixed with either IV fluids (p > 0.05). Conclusion: Exposure to blood during setting had a negative effect on gap width when retrocavities were filled with MTA using Tetraspan. No effect was seen on the arch perimeter in retrocavities filled with MTA mixed with Ringer's lactate or Tetraspan. Clinical significance: For avoiding failure, it is critical to select a biocompatible root-end filling material with high sealing ability. Hence, by doing the same, the clinical situation can be simulated.


HTML PDF Share
  1. Rao A, Rao A, Shenoy R. Mineral trioxide aggregate- a review. J Clin Pediatr Dent 2009;34(1):1–7. DOI: 10.17796/jcpd.34.1.n1t0757815067g83.
  2. Macwan C, Deshpande A. Mineral trioxide aggregate (MTA) in dentistry: a review of literature. J Oral Res Rev 2014;6(2):71–74. DOI: 10.4103/2249-4987.152914.
  3. Schwartz RS, Mauger M, Clement DJ, et al. Mineral trioxide aggregate: a new material for endodontics. J Am Dent Assoc 1999 Jul;130(7):967–975. DOI: 10.14219/jada.archive.1999.0337.
  4. Torabinejad M, Chivian N. Clinical applications of mineral trioxide aggregate. J Endod 1999;25(3):197–205. DOI: 10.1016/S0099-2399(99)80142-3.
  5. Srinivasan V, Waterhouse P, Whitworth J. Mineral trioxide aggregate in paediatric sentistry. Int J Paediatr Dent 2009;19(1):34–37. DOI: 10.1111/j.1365-263X.2008.00959.x.
  6. Bolhari B, Yazdi K, Sharifi F, et al. Comparative scanning electron microscopic study of the marginal adaptation of four root-end filling materials in presence and absence of blood. J Dent (Tehran) 2015;12(3):226–234.
  7. Milani AS, Rahimi S, Frougheyhani M, et al. Effect of blood contamination on marginal adaptation and surface microstructure of mineral trioxide aggregate: a SEM study. J Dent Res Dent Clin Dent Prosp 2013;7(3):158–163.
  8. Shipper G, Grossman ES, Botha AJ, et al. Marginal adaptation of mineral trioxide aggregate (MTA) compared with amalgam as a root-end filling material: a low-vacuum (LV) versus high-vacuum (HV) SEM study. Int Endod J 2004;37(5):325–336. DOI: 10.1111/j.0143-2885.2004.00806.x.
  9. Chong BS, Pitt Ford TR, Watson RF. Sealing ability of potential retrograde root filling materials. Dent Traumatol 1995;11(6):264–269. DOI: 10.1111/j.1600-9657.1995.tb00501.x.
  10. Taylor GN, Bump R. Endodontic considerations associated with periapical surgery. Oral Surg Oral Med Oral Pathol 1984;58(4):450–455. DOI: 10.1016/0030-4220(84)90343-8.
  11. Gutmann JL, Gutmann MS. Historical perspectives on the evolution of surgical procedures in endodontics. J Hist Dent 2010;58(1):1–42.
  12. Torabinejad M, Higa RK, McKendry DJ, et al. Dye leakage of four root end filling materials: effects of blood contamination. J Endod 1994;20(4):159–163. DOI: 10.1016/S0099-2399(06)80326-2.
  13. Kokate S, Pawar A. An in vitro comparative stereomicroscopic evaluation of marginal seal between MTA, glass ionomer cement & biodentine as root end filling materials using 1% methylene blue as tracer. Endodontology 2012;24:36–42.
  14. Gutmann JL. Surgical endodontics: past, present, and future. Endodon Top 2014;30(1):29–43. DOI: 10.1111/etp.12058.
  15. Gilheany PA, Figdor D, Tyas MJ. Apical dentin permeability and microleakage associated with root end resection and retrograde filling. J Endod 1994;20(1):22–26. DOI: 10.1016/s0099-2399(06)80022-1.
  16. Bates CF, Carnes DL, del Rio CE. Longitudinal sealing ability of mineral trioxide aggregate as a root-end filling material. J Endod 1996;22(11):575–578. DOI: 10.1016/S0099-2399(96)80023-9.
  17. Gagliani M, Taschieri S, Molinari R. Ultrasonic root-end preparation: influence of cutting angle on apical seal. J Endod 1998;24(11):726–730. DOI: 10.1016/S0099-2399(98)80162-3.
  18. Malhotra S, Hegde MN. Analysis of marginal seal of ProRoot MTA, MTA Angelus biodentine and glass ionomer cement as root-end filling materials: an in vitro study. J Oral Res Rev 2015;7(2):44–49. DOI: 10.4103/2249-4987.172493.
  19. Torabinejad M, Hong CU, Lee SJ, et al. Investigation of mineral trioxide aggregate for root-end filling in dogs. J Endod 1995;21(12):603–608. DOI: 10.1016/S0099-2399(06)81112-X.
  20. Hargreaves KM, Cohen S, Berman LH. Cohen's pathways of the pulp. 10th ed., Elsevier/Mosby; 2011. pp. 720–776.
  21. Torabinejad M. Chemical properties of MTA. In: Torabinejad M. Properties and clinical applications. 1st ed., Munksgard: John Wiley and Sons, Inc. Blackwell; 2014. pp. 17–36.
  22. Belio-Reyes IA, Bucio L, Cruz-Chavez E. Phase composition of ProRoot mineral trioxide aggregate by X-ray powder diffraction. J Endod 2009;35(6):875–878. DOI: 10.1016/j.joen.2009.03.004.
  23. Machado D, Bertassoni L, de Souza E, et al. Effect of additives on the compressive strength and setting time of a Portland cement. Braz Oral Res 2010;24(2):158–164. DOI: 10.1590/s1806-83242010000200006.
  24. Kogan P, He J, Glickman GN, et al. The effects of various additives on setting properties of MTA. J Endod 2006;32(6):569–572. DOI: 10.1016/j.joen.2005.08.006.
  25. https://www.bbraun.ph/content/dam/catalog/bbraun/bbraunProductCatalog/S/AEM2015/en-ph/b/15242872-1112-lactatedringerssolution.pdf.bb-.39375847/15242872-1112-lactatedringerssolution.pdf.
  26. Karnik HS. Fluid management in infants and children during intracranial surgery. J Neuroanaesthesiol Crit Care 2017;4(04):S24–S29. DOI: 10.4103/2348-0548.199945.
  27. Hasheminia SM, Nejad SL, Dianat O, et al. Comparing the sealing properties of mineral trioxide aggregate and an experimental ceramic based root end filling material in different environments. Indian J Dent Res 2013;24(4):474–477. DOI: 10.4103/0970-9290.118399.
  28. Orucoglu H, Sengun A, Yilmaz N. Apical leakage of resin based root canal sealers with a new computerized fluid filtration meter. J Endod 2005;31(12):886–890. DOI: 10.1097/01.don.0000164134.79052.b3.
  29. Orosco FA, Bramante CM, Garcia RB, et al. Sealing ability, marginal adaptation and their correlation using three root-end filling materials as apical plugs. J Appl Oral Sci 2010;18(2):127–134. DOI: 10.1590/s1678-77572010000200006.
  30. Mattison GD, Fraunhofer A, Delivanis PD, et al. Microleakage of retrograde amalgams. J Endod 1985;11(8):340–345. DOI: 10.1016/s0099-2399(85)80041-8.
  31. Clay CS, Peace GW. Ion beam sputtering: an improved method of metal coating SEM samples and shadowing CTEM samples. J Micros 1981;123(1):25–34. DOI: 10.1111/j.1365-2818.1981.tb01277.x.
  32. Khalighinejad N, Barekatine B, Hasheminia SM, et al. In vitro evaluation of two methods of ultrasonic irrigation on marginal adaptation of MTA plugs in open apex teeth: a SEM analysis. Indian J Dent Res 2014;25(1):69–72. DOI: 10.4103/0970-9290.131132.
  33. Sarkar NK, Caicedo R, Ritwik P, et al. Physicochemical basis of the biologic properties of mineral trioxide aggregate. J Endod 2005;32(2):97–100. DOI: 10.1097/01.don.0000133155.04468.41.
  34. Bozeman TB, Lemon RR, Eleazer PD. Elemental analysis of crystal precipitate from gray and white MTA. J Endod 2006;32(5):425–428. DOI: 10.1016/j.joen.2005.08.009.
  35. Rahimi S, Ghasemi N, Shahi S, et al. Effect of blood contamination on the retention characteristics of two endodontic biomaterials in simulated furcation perforations. J Endod 2013;39(5):697–700. DOI: 10.1016/j.joen.2013.01.002.
  36. Neekofar MH, Stone DF, Dummer PMH. The effect of blood contamination on the compressive strength and surface microstructure of mineral trioxide aggregate. Int Endod J 2010;43(9):782–791. DOI: 10.1111/j.1365-2591.2010.01745.x.
  37. Ustun Y, Topcuoglu HS, Akpek F, et al. The effect of blood contamination on dislocation resistance of different endodontic reparative materials. J Oral Sci 2015;57(3):185–190. DOI: 10.2334/josnusd.57.185.
  38. Ratih DN, Putri AR. Effect of blood contamination on push-out bond strength of mineral trioxide aggregate mixed with different liquids. J Med Biolog Engineer 2017;37(2):262–267. DOI: 10.1007/s40846-016-0199-8.
  39. Subramanyam D, Vasanthrajan M. Effect of oral tissue fluids on compressive strength of MTA and biodentine: an in vitro study. J Clin Diagn Res 2017;11(4):ZC94–ZC96. DOI: 10.7860/JCDR/2017/24510.9722.
  40. Tay FR, Pashley DH, Rueggeberg FA, et al. Calcium phosphate phase transformation produced by the interaction of the Portland cement component of white mineral trioxide aggregate with a phosphate-containing fluid. J Endod 2007;33(11):1347–1351. DOI: 10.1016/j.joen.2007.07.008.
  41. Gondim E, Kim S, de Souza-Filho. F. An investigation of microleakage from root-end fillings in ultrasonic retrograde cavities with or without finishing: a quantitative analysis. Oral Surg Oral Med Oral Path Oral Radiol Endod 2005;99(6):755–760. DOI: 10.1016/j.tripleo.2004.08.019.
  42. Bidar M, Moradi S, Jafarzadeh H, et al. Comparative SEM study of the marginal adaptation of white and grey MTA and Portland cement. Aust Endod J 2007;33(1):2–6. DOI: 10.1111/j.1747-4477.2007.00053.x.
  43. Sanchez AF, Berrocal IL, Gonzalez JM. Metaanalysis of filler materials in periapical surgery. Med Oral Patol Oral Cir Bucal 2008;13(3):E180–E185.
  44. Saini D, Nadig G, Saini R. A comparative analysis of microleakage of three root end filling materials - an in vitro study. Archiv Ororfac Sci 2008;3(2):43–47.
  45. Nekoofar MH, Oloomi K, Sheykhrezae MS, et al. An evaluation of the effect of blood and human serum on the surface microhardness and surface microstructure of mineral trioxide aggregate. Int Endod J 2010;43(10):849–858. DOI: 10.1111/j.1365-2591.2010.01750.x.
  46. Hindlekar A, Raghavendra SS. Comparative evaluation of sealing ability of three root-end filling materials- an in vitro study. Int J Dent Clin 2014;6(4):4–7.
  47. Montellano AM, Schwartz SA, Beeson TJ. Contamination of tooth-colored mineral trioxide aggregate used as a root-end filling material: a bacterial leakage study. J Endod 2006;32(5):452–455. DOI: 10.1016/j.joen.2005.07.001.
  48. Hasheminia M, Nejad SL, Asgary S. Sealing ability of MTA and CEM cement as root-end fillings of human teeth in dry, saliva or blood-contaminated conditions. Iran Endod J 2010;5(4):151–156.
  49. Ayatollahi F, Tabrizizadeh M, Abad MHB, et al. Comparison of microleakage of MTA and CEM cement apical plugs in three different media. Iran Endod J 2016;11(3):198–201. DOI: 10.7508/iej.2016.03.010.
  50. Pandey R, Dixit N, Dixit KK, et al. Comparative evaluation of microleakage of mineral trioxide aggregate and Geristore root-end filling materials in different environments: an in vitro study. J Conserv Dent 2018;21(3):328–332. DOI: 10.4103/JCD.JCD_333_17.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.