International Journal of Clinical Pediatric Dentistry

Register      Login

VOLUME 14 , ISSUE 4 ( July-August, 2021 ) > List of Articles

RESEARCH ARTICLE

Efficacy of Root Canal Instrumentation and Fracture Strength Assessment in Primary Molars after Preparing Two Different Shapes of Access Cavity: An Ex Vivo Histological Study

Yashika Singhal, Vandana Reddy

Keywords : Access cavity, Fracture strength, Pediatric endodontics, Primary tooth, Root canal debridement, Root canal instrumentation

Citation Information : Singhal Y, Reddy V. Efficacy of Root Canal Instrumentation and Fracture Strength Assessment in Primary Molars after Preparing Two Different Shapes of Access Cavity: An Ex Vivo Histological Study. Int J Clin Pediatr Dent 2021; 14 (4):518-524.

DOI: 10.5005/jp-journals-10005-1997

License: CC BY-NC 4.0

Published Online: 29-10-2021

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

Aim and objective: To evaluate the efficacy of root canal instrumentation and fracture strength assessment in primary molars after preparing different shapes of access cavity design. Materials and methods: Sixty extracted primary mandibular molars with at least 2/3rd roots were randomly, equally divided into two groups based on shapes of the access cavities; Group I: Traditional access cavity (TAC), Group II: Conservative access cavity (CAC). Each group was further subdivided into two subgroups with 15 samples each. After, root canal debridement, samples in subgroup 1 were sectioned for histological evaluation of root canal instrumentation efficacy, while subgroup 2 were assessed for fracture strength using a Universal Testing Machine. The data were analyzed statistically using Mann–Whitney and post hoc Tukey tests, with a p value <0.05. Results: Traditional access cavity showed statistically significant root canal debridement efficacy (p < 0.05) compared with CAC. Statistically significant differences were obtained between fracture strength values among the two groups (p < 0.05), with considerably higher fracture strength in the CAC group than TAC. Conclusion: Traditional access cavity design resulted in complete root canal debridement but caused weakening of tooth structure due to low fracture strength, necessitating the use of full coverage restoration postendodontic therapy.


HTML PDF Share
  1. Ahmed HM. Pulpectomy procedures in primary molar teeth. Eur J Dent 2014;3(1):3–6. DOI: 10.4103/2278-9626.126201.
  2. Coll JA, Sadrian R. Predicting pulpectomy success and its relationship to exfoliation and succedaneous dentition. Pediatr Dent 1996;18(1):57–63.
  3. Asundi A, Kishen A. Advanced digital photoelastic investigations on the tooth-bone interface. J Biomed Opt 2001;6(1):224–230. DOI: 10.1117/1.1344587.
  4. Hargreaves KM, Berman LH. Cohen's pathways of pulp. 11th ed., U.S.A: Elsevier; 2016.
  5. Dean JA, Jones JE, Vinson LW. McDonald and Avery's dentistry for the child and adolescent. U.S.A: Elsevier; 2016.
  6. Sabeti M, Kazem M, Dianat O, et al. Impact of access cavity design and root canal taper on fracture resistance of endodontically treated teeth: an ex vivo investigation. J Endod 2018;44(9):1402–1406. DOI: 10.1016/j.joen.2018.05.006.
  7. Monga P, Sharma V, Kumar S. Comparison of fracture resistance of endodontically treated teeth using different coronal restorative materials: an in vitro study. J Conserv Dent 2009;12(4):154–158. DOI: 10.4103/0972-0707.58338.
  8. Rezaei DM, Amirian CK, Tavanafar S. Upper central incisors restored with different posts and cores. Restor Dent Endod 2015;40(3):229–235. DOI: 10.5395/rde.2015.40.3.229.
  9. Auswin MK, Ramesh S. Truss access new conservative approach on access opening of a lower molar: A case report. J Adv Pharm 2017;7(3):134–136.
  10. Belladonna FG, De‐Deus G, Dummer PM, et al. Current status on minimal access cavity preparations: a critical analysis and a proposal for a universal nomenclature. Int Endod J 2020;53(12):1618–1635. DOI: 10.1111/iej.13391.
  11. Plotino G, Grande NM, Isufi A, et al. Fracture strength of endodontically treated teeth with different access cavity designs. J Endod 2017;43(6):995–1000. DOI: 10.1016/j.joen.2017.01.022.
  12. Cheong J, Chiam S, King NM, et al. Pulp chamber analysis of primary molars using micro-computed tomography: Preliminary findings. J Clin Pediatr Dent 2019;43(6):382–387. DOI: 10.17796/1053-4625-43.6.4.
  13. Siqueira JF, Araújo MCP, Garcia PF, et al. Histological evaluation of the effectiveness of five instrumentation techniques for cleaning the apical third of root canals. J Endod 1997;23(1):499–502. DOI: 10.1016/S0099-2399(97)80309-3.
  14. Adams N, Tomson PL. Access cavity preparation. Br Dent J. 2014;216(6):333–339. DOI: 10.1038/sj.bdj.2014.206.
  15. McCabe PS. Avoiding perforations in endodontics. J Ir Dent Assoc 2006;52(3):139–148.
  16. Hibbaed ED. Morphology of the root canals of the primary molar teeth. J Dent Child 1957;24(3):250–257.
  17. Zurcher E. The anatomy of the root canals of the teeth of the deciduous dentition and of the first permanent molars. New York: William Woods & Co.; 1925.
  18. Rover G, Belladonna FG, Bortoluzzi EA, et al. Influence of access cavity design on root canal detection, instrumentation efficacy, and fracture resistance assessed in maxillary molars. J Endod 2017;43(10):1657–1662. DOI: 10.1016/j.joen.2017.05.006.
  19. Krishan R, Paqué F, Ossareh A, et al. Impacts of conservative endodontic cavity on root canal instrumentation efficacy and resistance to fracture assessed in incisors, premolars, and molars. J Endod 2014;40(8):1160–1166. DOI: 10.1016/j.joen.2013.12.012.
  20. Neelakantan P, Khan K, Ng GP, et al. Does the orifice-directed dentin conservation access design debride pulp chamber and mesial root canal systems of mandibular molars similar to a traditional access design. J Endod 2018;44(2):274–279. DOI: 10.1016/j.joen.2017.10.010.
  21. Moore B, Verdelis K, Kishen A, et al. Impacts of contracted endodontic cavities on instrumentation efficacy and biomechanical responses in maxillary molars. J Endod 2016;42(12):1779–1783. DOI: 10.1016/j.joen.2016.08.028.
  22. Katge F, Wakpanjar MM. Root canal morphology of primary molars by clearing technique: an in vitro study. J Indian Soc Pedod Prev Dent 2018;36(2):151–155. DOI: 10.4103/JISPPD.JISPPD_237_16.
  23. Fumes AC, Sousa-Neto MD, Leoni GB, et al. Root canal morphology of primary molars: a micro-computed tomography study. Eur Arch Paediatr Dent 2014;15(5):317–326. DOI: 10.1007/s40368-014-0117-0.
  24. Paqué F, Balmer M, Attin T, et al. Preparation of oval-shaped root canals in mandibular molars using nickel-titanium rotary instruments: a micro-computed tomography study. J Endod 2010;36(2):703–707. DOI: 10.1016/j.joen.2009.12.020.
  25. Alghnay M, Aljuieed H. Conservative access cavity preparations. EC Dent Sci 2020;19(1):1–6.
  26. Aps JK. Cone beam computed tomography in paediatric dentistry: overview of recent literature. Eur Arch Paediatr Dent 2013;14(3):131–140. DOI: 10.1007/s40368-013-0029-4.
  27. Horner K, Barry S, Dave M, et al. Diagnostic efficacy of cone beam computed tomography in paediatric dentistry: a systematic review. Eur Arch Paediatr Dent 2019;19(2):1–20. DOI: 10.1007/s40368-019-00504-x.
  28. Hülsmann M, Peters OA, Dummer PMH. Mechanical preparation of root canals: shaping goals, techniques and means. Endod Topics 2005;10(1):30–76. DOI: 10.1111/j.1601-1546.2005.00152.x.
  29. Versiani MA, Pe´cora JD, Sousa-Neto MD. Flat-oval root canal preparation with self-adjusting file instrument: a micro-computed tomography study. J Endod 2011;37(4):1002–1007. DOI: 10.1016/j.joen.2011.03.017.
  30. De-Deus G, Souza EM, Barino B. The self-adjusting file optimizes debridement quality in oval-shaped root canals. J Endod 2011;37(3):701–705. DOI: 10.1016/j.joen.2011.02.001.
  31. Habib AA, Taha MI, Farah EM. Methodologies used in quality assessment of root canal preparation techniques: Review of the literature. J Taibah Univ Med Sci. 2015;10(2):123–131. DOI: 10.1016/j.jtumed.2014.11.002.
  32. Rodrigues RCV, Zandi H, Kristoffersen AK, et al. Influence of the apical preparation size and the irrigant type on bacterial reduction in root canal-treated teeth with apical periodontitis. J Endod 2017;43(7):1058–1063. DOI: 10.1016/j.joen.2017.02.004.
  33. Langeland K, Liao K, Pascon EA. Work-saving devices in endodontics: efficacy of sonic and ultrasonic techniques. J Endod 1985;11(11):499–510. DOI: 10.1016/s0099-2399(85)80223-5.
  34. ElAyouti A, Serry MI, Geis-Gerstorfer J, et al. Influence of cusp coverage on the fracture resistance of premolars with endodontic access cavities. Int Endod J 2011;44(6):543–549. DOI: 10.1111/j.1365-2591.2011.01859.x.
  35. Hamouda IM, Shehata SH. Fracture resistance of posterior teeth restored with modern restorative materials. J Biomed Res 2011;25(6):418–424. DOI: 10.1016/S1674-8301(11)60055-9.
  36. Linn J, Messer HH. Effect of restorative procedures on the strength of endodontically treated molars. J Endod 1994;20(10):479–485. DOI: 10.1016/S0099-2399(06)80043-9.
  37. Makati D, Shah NC, Brave D, et al. Evaluation of remaining dentin thickness and fracture resistance of conventional and conservative access and biomechanical preparation in molars using cone-beam computed tomography: an in vitro study. J Conserv Dent 2018;21(3):324–328. DOI: 10.4103/JCD.JCD_311_17.
  38. Yuan K, Niu C, Xie Q, et al. Comparative evaluation of the impact of minimally invasive preparation vs. conventional straight-line preparation on tooth biomechanics: a finite element analysis. Eur J Oral Sci 2016;124(8):591–596. DOI: 10.1111/eos.12303.
  39. Lin CY, Lin D, He WH. Impacts of 3 different endodontic access cavity designs on dentin removal and point of entry in 3-dimensional digital models. J Endod 2020;46(4):524–530. DOI: 10.1016/j.joen.2020.01.002.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.