International Journal of Clinical Pediatric Dentistry

Register      Login

VOLUME 13 , ISSUE 1 ( January-February, 2020 ) > List of Articles

Original Article

A Comparative Evaluation of Remineralizing Potential of Three Commercially Available Remineralizing Agents: An In Vitro Study

Darshana Vinod, Anjana Gopalakrishnan, Saravanakumar M Subramani, Muralikrishnan Balachandran, Vidya Manoharan, Amrutha Joy

Keywords : Casein phospho peptide–amorphous calcium phosphate, Casein sucrose phosphate, DIAGNOdent, Laboratory research, Silver diamine fluoride

Citation Information : Vinod D, Gopalakrishnan A, Subramani SM, Balachandran M, Manoharan V, Joy A. A Comparative Evaluation of Remineralizing Potential of Three Commercially Available Remineralizing Agents: An In Vitro Study. Int J Clin Pediatr Dent 2020; 13 (1):61-65.

DOI: 10.5005/jp-journals-10005-1715

License: CC BY-NC 4.0

Published Online: 01-02-2020

Copyright Statement:  Copyright © 2020; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Aim: An in vitro study to evaluate and compare the remineralization potential of commercially available remineralizing agents containing silver diamine fluoride (SDF), casein sucrose phosphate (CSP), casein phospho peptide-amorphous calcium phosphate (CPP-ACP) using DIAGNOdent. Materials and methods: Thirty freshly extracted premolars for orthodontic treatment were collected. Specimens were randomly divided into 3 groups of 10 each: group I: SDF, group II: CSP, group III: CPP-ACP. The samples were subjected to DIAGNOdent analysis for recording the baseline values. Specimens were placed in demineralizing solution incubated at 37°C for 72 hours. DIAGNOdent values were recorded after demineralization. Following this, remineralization procedure was carried out using 3 different remineralizing agents: group I samples with SDF, group II with CSP, and group III with CPP-ACP. The remineralization procedure was performed to group I once and repeated for 14 days for group II and group III and storage solution was changed every 24 hours. The samples were subjected to DIAGNOdent analysis after 72 hours, 7 days, and 14 days and values were recorded. Results: The data were analysed using Statistical Package for the Social Sciences (SPSS) with analysis of variance (ANOVA) and post hoc test. Intragroup comparison of DIAGNOdent readings showed a highly significant difference between baseline, postdemineralization, and postremineralization values. Among intergroup comparison, SDF showed maximum remineralization values followed by CSP and CPP-ACP, respectively. Conclusion: Silver diamine fluoride, CSP, and CPP -ACP are proven to possess remineralization potential. Clinical significance: A comparative evaluation of these three remineralizing agents will aid in identifying most potent and effective agent in treating initial caries lesions in an effective noninvasive and child-friendly manner.


PDF Share
  1. Kamath P, Nayak R, Kamath SU, et al. A comparative evaluation of the remineralization potential of three commercially available remineralizing agents on white spot lesions in primary teeth: An in vitro study. J Indian Soc Pedod Prev Dent 2017;35(3):229–237. DOI: 10.4103/JISPPD.JISPPD_242_16.
  2. Hara A, Zero D. The caries environment: Saliva, pellicle, diet, and hard tissue ultrastructure. Dent Clin North Am 2010;54(3):455–467. DOI: 10.1016/j.cden.2010.03.008.
  3. Kwang S, Abbott P. The presence and distribution of bacteria in dentinal tubules of root filled teeth. Int Endod J 2014;47(6):600–610. DOI: 10.1111/iej.12195.
  4. Scaramucci T, Carvalho JC, Hara AT, et al. Causes of Dental Erosion: Intrinsic Factors. Berlin: Springer International Publishing; 2015; pp. 35–67.
  5. Featherstone JD, Lussi A. Understanding the chemistry of dental erosion. Monogr Oral Sci 2006;20:66–76.
  6. Higham S, [webpage on the Internet]. Caries Process and Prevention Strategies: Demineralization/Remineralization. Available from: http://www.dentalcare.com/media/en-US/education/ce372/ce372.pdf. Accessed June 23, 2016.
  7. Raghu TN, Ananthakrishna S. Remineralization potential of calcium sucrose phosphate on demineralized enamel: results of an in vitro study. Journal of International Oral Health 2016;8(6):704.
  8. Pradeep K, Rao PK. Remineralizing agents in the non-invasive treatment of early carious lesions. Int J Dent Case Rep 2011;1:73–84.
  9. Pretty IA. Caries detection and diagnosis: novel technologies. J Dent 2006;34(10):727–739. DOI: 10.1016/j.jdent.2006.06.001.
  10. Angmar-Månsson B, ten Bosch JJ. Advances in methods for diagnosing coronal caries. A review. Adv Dent Res 1993;7(2):70–79. DOI: 10.1177/08959374930070021801.
  11. de Josselin de Jong E, Sundström F, Westerling H, et al. A new method for in vivo quantification of changes in initial enamel caries with laser fluorescence. Caries Res 1995;29(1):2–7. DOI: 10.1159/000262032.
  12. Angmar-Månsson B, Al-Khateeb S, Tranæus S. Monitoring the caries process: Optical methods for clinical diagnosis and quantification of enamel caries. Eur J Oral Sci 1996;104(4 Pt 2):480–485. DOI: 10.1111/j.1600-0722.1996.tb00116.x.
  13. Al-Khateeb S, ten Cate JM, Angmar-Månsson B, et al. Quantification of formation and remineralization of artificial enamel lesions with a new portable fluorescence device. Adv Dent Res 1997;11(4):502–506. DOI: 10.1177/08959374970110041801.
  14. Al-Khateeb S, Oliveby A, de Josselin de Jong E, et al. Laser fluorescence quantification of remineralization in situ of incipient enamel lesions: Influence of fluoride supplements. Caries Res 1997;31(2):132–140. DOI: 10.1159/000262388.
  15. Ferreira Zandoná AG, Analoui M, Beiswanger BB, et al. An in vitro comparison between laser fluorescence and visual examination for detection of demineralization in occlusal pits and fissures. Caries Res 1998;32(3):210–218. DOI: 10.1159/000016455.
  16. Ie YL, Verdonschot EH, Schaeken MJ, et al. Electrical conductance of fissure enamel in recently erupted molar teeth as related to caries status. Caries Res 1995;29(2):94–99. DOI: 10.1159/000262048.
  17. Huysmans MC, Longbottom C, Hintze H, et al. Surface-specific electrical occlusal caries diagnosis: reproducibility, correlation with histological lesion depth, and tooth type dependence. Caries Res 1998;32(5):330–336. DOI: 10.1159/000016468.
  18. MC Huysmans, Longbottom C, Pitts NB. Electrical methods in occlusal caries diagnosis: An in vitro comparison with visual inspection and bite-wing radiography. Caries Res 1998;33:324–329.
  19. Schneiderman A, Elbaum M, Shultz T, et al. Assessment of dental caries with digital imaging fiber-optic transillumination (DIFOTI): In vitro study. Caries Res 1997;31(2):103–110. DOI: 10.1159/000262384.
  20. Hibst R, Gall R. Development of a diode laser-based fluorescence caries detector. Caries Res 1998;32:294.
  21. Pinelli C, Campos Serra M, de Castro Monteiro Loffredo L. Validity and reproducibility of a laser fluorescence system for detecting the activity of white-spot lesions on free smooth surfaces in vivo. Caries Res 2002;36(1):19–24. DOI: 10.1159/000057585.
  22. Buck T, Pellegrini P, Sauerwein R, et al. Elastomeric-ligated vs self-ligating appliances: A pilot study examining microbial colonization and white spot lesion formation after 1 year of orthodontic treatment. Orthodontics (Chic) 2011;12(2):108–121.
  23. Shi XQ, Tranaeus S, Angmar-Mansson B. Comparison of QLF and DIAGNOdent for quantification of smooth surface caries. Caries Res 2001;35(1):21–26. DOI: 10.1159/000047426.
  24. Al-Khateeb S, Forsberg CM, de Josselin de Jong E, et al. A longitudinal laser fluorescence study of white spot lesions in orthodontic patients. Am J Orthod Dentofacial Orthop 1998;113(6):595–602. DOI: 10.1016/S0889-5406(98)70218-5.
  25. Eggertsson H, Analoui M, van der Veen M, et al. Detection of early interproximal caries in vitro using laser fluorescence, dye-enhanced laser fluorescence and direct visual examination. Caries Res 1999;33(3):227–233. DOI: 10.1159/000016521.
  26. Mendes FM, Pinheiro SL, Bengtson AL. Effect of alteration in organic material of the occlusal caries on diagnodent readings. Braz Oral Res 2004;18(2):141–144. DOI: 10.1590/S1806-83242004000200009.
  27. Pai D, Bhat SS, Taranath A, et al. Use of laser fluorescence and scanning electron microscope to evaluate remineralization of incipient enamel lesions remineralized by topical application of casein phospho peptide amorphous calcium phosphate (CPP–ACP) containing cream. J Clin Pediatr Dent 2008;32(3):201–206. DOI: 10.17796/jcpd.32.3.d083470201h58m13.
  28. Bahrololoomi Z, Musavi SA, Kabudan M. In vitro evaluation of the efficacy of laser fluorescence (DIAGNOdent) to detect demineralization and remineralization of smooth enamel lesions. J Conserv Dent 2013;16(4):362–366. DOI: 10.4103/0972-0707.114360.
  29. Patil N, Choudhari S, Kulkarni S, et al. Comparative evaluation of remineralizing potential of three agents on artificially demineralized human enamel: An in vitro study. J Conserv Dent 2013;16(2):116–120. DOI: 10.4103/0972-0707.108185.
  30. Gao SS, Zhao IS, Niraishi N, et al. Clinical trials of silver diamine fluoride in arresting caries among children a systematic review. JDR Clin Trans Res 2016;1(3):201–210. DOI: 10.1177/2380084416661474.
  31. Chu CH, Lo EC, Lin HC. Effectiveness of silver diamine fluoride and sodium fluoride varnish in arresting dentin caries in Chinese pre-school children. J Dent Res 2002;81(11):767–770. DOI: 10.1177/0810767.
  32. Chu CH, Lee AH, Zheng L, et al. Arresting rampant dental caries with silver diamine fluoride in a young teenager suffering from chronic oral graft vs host disease post-bone marrow transplantation: A case report. BMC Res Notes 2014;7:3. DOI: 10.1186/1756-0500-7-3.
  33. Tan HP, Lo EC, Dyson JE, et al. A randomized trial on root caries prevention in elders. J Dent Res 2010;89(10):1086–1090. DOI: 10.1177/0022034510375825.
  34. Mei ML, Li QL, Chu CH, et al. Antibacterial effects of silver diamine fluoride on multi-species cariogenic biofilm on caries. Ann Clin Microbiol Antimicrob 2013;12:4. DOI: 10.1186/1476-0711-12-4.
  35. Chu CH, Lo EC. Microhardness of dentine in primary teeth after topical fluoride applications. J Dent 2008;36(6):387–391. DOI: 10.1016/j.jdent.2008.02.013.
  36. Mei ML, Ito L, Cao Y, et al. The inhibitory effects of silver diamine fluorides on cysteine cathepsins. J Dent 2014;42(3):329–335. DOI: 10.1016/j.jdent.2013.11.018.
  37. Chu CH, Mei L, Seneviratne CJ, et al. Effects of silver diamine fluoride on dentine carious lesions induced by streptococcus mutans and Actinomyces naeslundii biofilms. Int J Paediatr Dent 2012;22(1):2–10. DOI: 10.1111/j.1365-263X.2011.01149.x.
  38. Mei ML, Chu CH, Low KH, et al. Caries arresting effect of silver diamine fluoride on dentine carious lesion with S. Mutans and L. Acidophilus dual-species cariogenic biofilm. Med Oral Patol Oral Cir Bucal 2013;18(6):e824–e831. DOI: 10.4317/medoral.18831.
  39. Yamaga R, Nishino M, Yoshida S, et al. Diammine silver fluoride and its clinical application. J Osaka Univ Dent Sch 1972;12:1–20.
  40. Suzuki T, Nishida M, Sobue S, et al. Effects of diammine silver fluoride on tooth enamel. J Osaka Univ Dent Sch 1974;14:61–72.
  41. Lou YL, Botelho MG, Darvell BW. Reaction of silver diamine [corrected] fluoride with hydroxyapatite and protein. J Dent 2011;39(9):612–618. DOI: 10.1016/j.jdent.2011.06.008.
  42. Mei ML, Ito L, Cao Y, et al. An ex vivo study of arrested primary teeth caries with silver diamine fluoride therapy. J Dent 2014;42(4):395–402. DOI: 10.1016/j.jdent.2013.12.007.
  43. Knight GM, McIntyre JM, Craig GG, et al. An in vitro model to measure the effect of a silver fluoride and potassium iodide treatment on the permeability of demineralized dentine to streptococcus mutans. Aust Dent J 2005;50(4):242–255. DOI: 10.1111/j.1834-7819.2005.tb00367.x.
  44. dos Santos Jr VE, Vasconcelos Filho A, Targino AG, et al. A new “Silver-Bullet” to treat caries in children-nano silver fluoride: a randomised clinical trial. J Dent 2014;42(8):945–951. DOI: 10.1016/j.jdent.2014.05.017.
  45. Jain P, Kaul R, Saha S, et al. Smart materials-making pediatric dentistry bio-smart. Int J Pedod Rehabil 2017;2(2):55. DOI: 10.4103/ijpr.ijpr_8_17.
  46. Lata S, Varghese NO, Varughese JM. Remineralization potential of fluoride and amorphous calcium phosphate-casein phospho peptide on enamel lesions: An in vitro comparative evaluation. J Conserv Dent 2010;13(1):42–46. DOI: 10.4103/0972-0707.62634.
  47. Exterkate RA, Damen JJ, ten Cate JM. A single-section model for enamel de- and remineralization studies 1. The effects of different ca/P ratios in remineralization solutions. J Dent Res 1993;72(12):1599–1603. DOI: 10.1177/00220345930720121201.
  48. Available from: http://www.biodentalremin.com/. [Last accessed on 2015 Dec 28].
  49. Jamadar AB, Uppin VM, Pujar M, et al. Comparative evaluation of different remineralizing agents on the microhardness of bleached enamel surface an in vitro study. Paripex-Indian Journal of Research 2018;6(12).
  50. Reema SD, Lahiri PK, Roy SS. Review of casein phosphopeptidesamorphous calcium phosphate. Chin J Dent Res 2014;17:7–14.
  51. Kaur G, Sanap AU, Agarwal SD, et al. Comparative evaluation of two different remineralizing agents on the microhardness of bleached enamel surface: results of an in vitro study. Indian J Dent Res 2015;26(2):176. DOI: 10.4103/0970-9290.159154.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.