International Journal of Clinical Pediatric Dentistry

Register      Login

VOLUME 14 , ISSUE 1 ( January-February, 2021 ) > List of Articles

Systematic Review And Meta-Analysis

Cytotoxicity and Bioactivity of Mineral Trioxide Aggregate and Bioactive Endodontic Type Cements: A Systematic Review

Uma Dixit, Rucha Shivajirao Bhise Patil, Rupanshi Parekh

Citation Information : Dixit U, Patil RS, Parekh R. Cytotoxicity and Bioactivity of Mineral Trioxide Aggregate and Bioactive Endodontic Type Cements: A Systematic Review. Int J Clin Pediatr Dent 2021; 14 (1):30-39.

DOI: 10.5005/jp-journals-10005-1880

License: CC BY-NC 4.0

Published Online: 14-07-2021

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

Background: Knowledge of the cytotoxicity and bioactivity of endodontic materials may assist in understanding their ability to promote dental pulp stem cell activity and pulp healing in primary teeth. Materials and methods: This systematic review was carried out by searching the electronic databases such as PubMed, Google Scholar, and Cochrane reviews for the articles published between January 2000 and December 2018 using the appropriate MeSH keywords. An independent investigator evaluated the abstracts and titles for possible inclusion, as per the stipulated inclusion and exclusion criteria. The topics considered for extracting data from each study were: cell lineage, cytotoxicity assay used, and type of material tested. Results: Seven eligible studies were selected for assessing the quality of evidence on the bioactivity of bioactive endodontic cements (BECs) (1 human cell line, 2 animal cell lines, and 4 in vitro, animal, and human studies) and 13 studies were selected for reviewing the quality of evidence on cytotoxicity (7 human cell lines, 4 animal cell lines, and 2 animal model studies). Very limited studies had been conducted on the bioactivity of materials other than mineral trioxide aggregate (MTA). With regards to cytotoxicity, the studies were diverse and most of the studies were based on MTT assay. Mineral trioxide aggregate is the most frequently used as well as studied root-end filling cement, and the literature evidence corroborated its reduced cytotoxicity and enhanced bioavailability. Conclusion: There was a lack of sufficient evidence to arrive at a consensus on the ideal material with minimal cytotoxicity and optimal bioactivity. More focused human/cell line-based studies are needed on the available root filling materials. Clinical significance: The present systematic review provides an update on the available literature evidence on the cytotoxicity and bioactivity of various BECs including MTAs and their influence on the different cells with respect to their composition and strength.


HTML PDF Share
  1. Torabinejad M, Parirokh M, Dummer PMH. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part II: other clinical applications and complications. Int Endod J 2018;51(3):284–317. DOI: 10.1111/iej.12843.
  2. Walsh RM, He J, Schweitzer J, et al. Bioactive endodontic materials for everyday use: a review. Gen Dent 2018;66(3):48–51.
  3. Raghavendra SS, Jadhav GR, Gathani KM, et al. Bioceramics in endodontics – a review. J Istanb Univ Fac Dent 2017;51(3 Suppl 1): S128–S137. DOI: 10.17096/jiufd.63659.
  4. Asthana G, Bhargava S. Bioactive materials: a comprehensive review. Sch J App Med Sci 2014;2(6):3231–3237.
  5. Parirokh M, Torabinejad M, Dummer PMH. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part I: vital pulp therapy. Int Endod J 2018;51(2):177–205. DOI: 10.1111/iej.12841.
  6. Tsai C-L, Ke M-C, Chen Y-H, et al. Mineral trioxide aggregate affects cell viability and induces apoptosis of stem cells from human exfoliated deciduous teeth. BMC Pharmacol Toxicol [Internet] 2018;15(1):19. DOI: 10.1186/s40360-018-0214-5.
  7. Camilleri J, Montesin FE, Brady K, et al. The constitution of mineral trioxide aggregate. Dent Mat 2005;21(4):297–303. DOI: 10.1016/j.dental.2004.05.010.
  8. Camilleri J. The chemical composition of mineral trioxide aggregate. J Conserv Dent 2008;11(4):141–143. DOI: 10.4103/0972-0707. 48834.
  9. Camilleri J. Hydration mechanisms of mineral trioxide aggregate. Int Endod J 2007;40(6):462–470. DOI: 10.1111/j.1365-2591.2007.01248.x.
  10. Malhotra N, Agarwal A, Mala K. Mineral trioxide aggregate: a review of physical properties. Compend Contin Educ Dent 2013;34(2):e25–e32.
  11. Malhotra N, Agarwal A, Mala K. Mineral trioxide aggregate: part 2 - a review of the material aspects. Compend Contin Educ Dent 2013;34(3):e38–e43.
  12. Srinivasan V, Waterhouse P, Whitworth J. Mineral trioxide aggregate in paediatric dentistry. Int J Paediatr Dent 2009;19(1):34–47. DOI: 10.1111/j.1365-263X.2008.00959.x.
  13. Monisha D, Manish C, MTA as A Revolution in Endodontics-A Review. In 2013.
  14. Jaberiansari Z, Naderi S, Tabatabaei FS. Cytotoxic effects of various mineral trioxide aggregate formulations, calcium-enriched mixture and a new cement on human pulp stem cells. Iran Endod J 2014;9(4):271–276.
  15. Koulaouzidou EA, Economides N, Beltes P, et al. In vitro evaluation of the cytotoxicity of ProRoot MTA and MTA angelus. J Oral Sci 2008;50(4):397–402. DOI: 10.2334/josnusd.50.397.
  16. Ghoddusi J, Tavakkol Afshari J, Donyavi Z, et al. Cytotoxic effect of a new endodontic cement and mineral trioxide aggregate on L929 line culture. Iran Endod J 2008;3(2):17–23.
  17. Crespo-Gallardo I, Hay-Levytska O, Martín-González J, et al. Criteria and treatment decisions in the management of deep caries lesions: is there endodontic overtreatment? J Clin Exp Dent 2018;10(8):e751–e760. DOI: 10.4317/jced.55050.
  18. De Deus G, Ximenes R, Gurgel-Filho ED, et al. Cytotoxicity of MTA and Portland cement on human ECV 304 endothelial cells. Int Endod J 2005;38(9):604–609. DOI: 10.1111/j.1365-2591.2005.00987.x.
  19. Küçükkaya S, Görduysus MÖ, Zeybek ND, et al. In vitro cytotoxicity of calcium silicate-based endodontic cement as root-end filling materials [Internet]. Scientifica 2016;2016::9203932. DOI: 10.1155/2016/9203932.
  20. Gomes-Cornélio AL, Rodrigues EM, Salles LP, et al. Bioactivity of MTA plus, biodentine and an experimental calcium silicate-based cement on human osteoblast-like cells. Int Endod J 2017;50(1):39–47. DOI: 10.1111/iej.12589.
  21. Khedmat S, Dehghan S, Hadjati J, et al. In vitro cytotoxicity of four calcium silicate-based endodontic cements on human monocytes, a colorimetric MTT assay. Restor Dent Endod 2014;39(3):149–154. DOI: 10.5395/rde.2014.39.3.149.
  22. Tanomaru-Filho M, Andrade AS, Rodrigues EM, et al. Biocompatibility and mineralized nodule formation of Neo MTA plus and an experimental tricalcium silicate cement containing tantalum oxide. Int Endod J 2017;50(Suppl 2):e31–e39. DOI: 10.1111/iej.12780.
  23. Krishnan V, Lakshmi T. Bioglass: a novel biocompatible innovation. J Adv Pharm Technol Res 2013;4(2):78–83. DOI: 10.4103/2231-4040.111523.
  24. Kaur M, Singh H, Dhillon JS, et al. MTA versus biodentine: review of literature with a comparative analysis. J Clin Diagn Res 2017;11(8):ZG01–ZG05. DOI: 10.7860/JCDR/2017/25840.10374.
  25. Pintado LS, Torre E, do N, et al. Development of a dual-cure mineral trioxide aggregate-based cement: biological, physical, and mechanical properties. J Conserv Dent 2018;21(1):74–79.
  26. Güven EP, Taşlı PN, Yalvac ME, et al. In vitro comparison of induction capacity and biomineralization ability of mineral trioxide aggregate and a bioceramic root canal sealer. Int Endod J 2013;46(12):1173–1182. DOI: 10.1111/iej.12115.
  27. Haglund R, He J, Jarvis J, et al. Effects of root-end filling materials on fibroblasts and macrophages in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;95(6):739–745. DOI: 10.1067/moe.2003.231.
  28. Saidon J, He J, Zhu Q, et al. Cell and tissue reactions to mineral trioxide aggregate and Portland cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;95(4):483–489. DOI: 10.1067/moe.2003.20.
  29. Bidar M, Naghavi N, Mohtasham N, et al. Mineral trioxide aggregate and Portland cement for direct pulp capping in dog: a histopathological evaluation. J Dent Res Dent Clin Dent Prosp 2014;8(3):134–140.
  30. Leye Benoist F, Gaye Ndiaye F, Kane AW, et al. Evaluation of mineral trioxide aggregate (MTA) versus calcium hydroxide cement (Dycal(®)) in the formation of a dentine bridge: a randomised controlled trial. Int Dent J 2012;62(1):33–39. DOI: 10.1111/j.1875-595X.2011.00084.x.
  31. Eskandarizadeh A, Shahpasandzadeh MH, Shahpasandzadeh M, et al. A comparative study on dental pulp response to calcium hydroxide, white and grey mineral trioxide aggregate as pulp capping agents. J Conserv Dent 2011;14(4):351–355. DOI: 10.4103/0972-0707.87196.
  32. Shokouhinejad N, Nekoofar MH, Razmi H, et al. Bioactivity of EndoSequence root repair material and bioaggregate. Int Endod J 2012;45(12):1127–1134. DOI: 10.1111/j.1365-2591.2012.02083.x.
  33. Hirschman WR, Wheater MA, Bringas JS, et al. Cytotoxicity comparison of three current direct pulp-capping agents with a new bioceramic root repair putty. J Endod 2012;38(3):385–388. DOI: 10.1016/j.joen.2011.11.012.
  34. Yoshino P, Nishiyama CK, Modena KC, et al. In vitro cytotoxicity of white MTA, MTA Fillapex® and Portland cement on human periodontal ligament fibroblasts. Braz Dent J 2013;24(2):111–116. DOI: 10.1590/0103-6440201302115.
  35. Zhou H, Du T, Shen Y, et al. In vitro cytotoxicity of calcium silicate-containing endodontic sealers. J Endod 2015;41(1):56–61. DOI: 10.1016/j.joen.2014.09.012.
  36. Zhou H, Shen Y, Wang Z, et al. In vitro cytotoxicity evaluation of a novel root repair material. J Endod 2013;39(4):478–483. DOI: 10.1016/j.joen.2012.11.026.
  37. Ma J, Shen Y, Stojicic S, et al. Biocompatibility of two novel root repair materials. J Endod 2011;37(6):793–798. DOI: 10.1016/j.joen.2011.02.029.
  38. Mukhtar-Fayyad D. Cytocompatibility of new bioceramic-based materials on human fibroblast cells (MRC-5). Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;112(6):e137–e142. DOI: 10.1016/j.tripleo.2011.05.042.
  39. Naghavi N, Ghoddusi J, Sadeghnia HR, et al. Genotoxicity and cytotoxicity of mineral trioxide aggregate and calcium enriched mixture cements on L929 mouse fibroblast cells. Dent Mater J 2014;33(1):64–69. DOI: 10.4012/dmj.2013-123.
  40. Alanezi AZ, Jiang J, Safavi KE, et al. Cytotoxicity evaluation of endosequence root repair material. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109(3):e122–e125. DOI: 10.1016/j.tripleo.2009.11.028.
  41. Nair U, Ghattas S, Saber M, et al. A comparative evaluation of the sealing ability of 2 root-end filling materials: an in vitro leakage study using enterococcus faecalis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;112(2):e74–e77. DOI: 10.1016/j.tripleo.2011. 01.030.
  42. Bin CV, Valera MC, Camargo SEA, et al. Cytotoxicity and genotoxicity of root canal sealers based on mineral trioxide aggregate. J Endod 2012;38(4):495–500. DOI: 10.1016/j.joen.2011.11.003.
  43. Ribeiro DA, Sugui MM, Matsumoto MA, et al. Genotoxicity and cytotoxicity of mineral trioxide aggregate and regular and white Portland cements on Chinese hamster ovary (CHO) cells in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;101(2):258–261. DOI: 10.1016/j.tripleo.2005.02.080.
  44. Batur Y-B, Acar G, Yalcin Y, et al. The cytotoxic evaluation of mineral trioxide aggregate and bioaggregate in the subcutaneous connective tissue of rats. Med Oral Patol Oral Cir Bucal 2013;18(4):e745–e751. DOI: 10.4317/medoral.19095.
  45. Sanz JL, Rodríguez-Lozano FJ, Llena C, et al. Bioactivity of bioceramic materials used in the dentin-pulp complex therapy: a systematic review. Materials (Basel) 2019;12(7):1015.
  46. Niu L, Jiao K, Wang T, et al. A review of the bioactivity of hydraulic calcium silicate cements. J Dent 2014;42(5):517–533. DOI: 10.1016/j.jdent.2013.12.015.
  47. Roberts HW, Toth JM, Berzins DW, et al. Mineral trioxide aggregate material use in endodontic treatment: a review of the literature. Dent Mater 2008;24(2):149–164. DOI: 10.1016/j.dental.2007.04.007.
  48. Hubbell JA. Bioactive biomaterials. Curr Opin Biotechnol 1999;10(2):123–129. DOI: 10.1016/S0958-1669(99)80021-4.
  49. Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 2011;32(11):2757–2774. DOI: 10.1016/j.biomaterials.2011.01.004.
  50. Okiji T, Yoshiba K. Reparative dentinogenesis induced by mineral trioxide aggregate: a review from the biological and physicochemical points of view. Int J Dent 2009;2009:464280. DOI: 10.1155/2009/464280.
  51. Ravi GR, Subramanyam RV. Possible mechanisms of lack of dentin bridge formation in response to calcium hydroxide in primary teeth. Dent Hypothe 2015;6(1):6. DOI: 10.4103/2155-8213.150863.
  52. Koike T, Polan MAA, Izumikawa M, et al. Induction of reparative dentin formation on exposed dental pulp by dentin phosphophoryn/collagen composite. Biomed Res Int 2014;2014:745139. DOI: 10.1155/2014/745139.
  53. Bioactivity and osteoinductivity of glasses and glassceramics and their material determinants.
  54. Modareszadeh MR, Di Fiore PM, Tipton DA, et al. Cytotoxicity and alkaline phosphatase activity evaluation of endosequence root repair material. J Endod 2012;38(8):1101–1105. DOI: 10.1016/j.joen.2012.04.014.
  55. Boldrin Mestieri L, Cornélio A, Rodrigues EM, et al. Biocompatibility and bioactivity of calcium silicate-based endodontic sealers in human dental pulp cells. J App Oral Sci 2015;23(5):467–471. DOI: 10.1590/1678-775720150170.
  56. Gandolfi M, Siboni F, Polimeni A, et al. In vitro screening of the apatite-forming ability, biointeractivity and physical properties of a tricalcium silicate material for endodontics and restorative dentistry. Dentis J 2013;1(4):41–60. DOI: 10.3390/dj1040041.
  57. Ma R, Guo D. Evaluating the bioactivity of a hydroxyapatite-incorporated polyetheretherketone biocomposite. J Orthop Surg Res [Internet] 2019;14(1):32. DOI: 10.1186/s13018-019-1069-1.
  58. Mestieri LB, Gomes-Cornélio AL, Rodrigues EM, et al. Biocompatibility and bioactivity of calcium silicate-based endodontic sealers in human dental pulp cells. J Appl Oral Sci 2015;23(5):467–471. DOI: 10.1590/1678-775720150170.
  59. Chang S-W. Chemical characteristics of mineral trioxide aggregate and its hydration reaction. Restor Dent Endod 2012;37(4):188–193. DOI: 10.5395/rde.2012.37.4.188.
  60. Tawil PZ, Duggan DJ, Galicia JC. MTA: a clinical review. Compend Contin Educ Dent 2015;36(4):247–264.
  61. Yuan Z, Zhu X, Li Y, et al. Influence of iRoot SP and mineral trioxide aggregate on the activation and polarization of macrophages induced by lipopolysaccharide. BMC Oral Health 2018;18(1):56. DOI: 10.1186/s12903-018-0511-9.
  62. Bhagat D, Sunder RK, Devendrappa SN, et al. A comparative evaluation of ProRoot mineral trioxide aggregate and Portland cement as a pulpotomy medicament. J Indian Soc Pedod Prev Dent 2016;34(2):172–176. DOI: 10.4103/0970-4388.180448.
  63. Shahi S, Yavari HR, Rahimi S, et al. Comparison of the sealing ability of mineral trioxide aggregate and Portland cement used as root-end filling materials. J Oral Sci 2011;53(4):517–522. DOI: 10.2334/josnusd.53.517.
  64. Gandolfi MG, Siboni F, Primus CM, et al. Ion release, porosity, solubility, and bioactivity of MTA plus tricalcium silicate. J Endodont 2014;40(10):1632–1637. DOI: 10.1016/j.joen.2014.03.025.
  65. Fuad A, Al-Sabri, Elmarakby A, et al. Role of mineral trioxide aggregate (MTA) and calcium hydroxide in conservative dentistry as pulp capping material: a review. Am J Health Res 2017;5(1):1–6. DOI: 10.11648/j.ajhr.20170501.11.
  66. Gandolfi MG, Taddei P, Tinti A, et al. Apatite-forming ability (bioactivity) of ProRoot MTA. Int Endod J 2010;43(10):917–929. DOI: 10.1111/j.1365-2591.2010.01768.x.
  67. Kim M, Yang W, Kim H, et al. Comparison of the biological properties of ProRoot MTA, OrthoMTA, and Endocem MTA cements. J Endod 2014;40(10):1649–1653. DOI: 10.1016/j.joen.2014.04.013.
  68. Collado-González M, García-Bernal D, Oñate-Sánchez RE, et al. Cytotoxicity and bioactivity of various pulpotomy materials on stem cells from human exfoliated primary teeth. Int Endod J 2017;50(Suppl 2):e19–e30. DOI: 10.1111/iej.12751.
  69. Malkondu Ö, Karapinar Kazandağ M, Kazazoğlu E. A review on biodentine, a contemporary dentine replacement and repair material. Biomed Res Int 2014;2014:160951. DOI: 10.1155/2014/160951.
  70. Anderson JM. Future challenges in the in vitro and in vivo evaluation of biomaterial biocompatibility. Regen Biomater 2016;3(2):73–77. DOI: 10.1093/rb/rbw001.
  71. Akbulut MB, Arpaci PU, Eldeniz AU. Effects of four novel root-end filling materials on the viability of periodontal ligament fibroblasts. Restor Dent Endod 2018;43(3):e24. DOI: 10.5395/rde.2018.43.e24.
  72. Samyuktha V, Ravikumar P, Nagesh B, et al. Cytotoxicity evaluation of root repair materials in human-cultured periodontal ligament fibroblasts. J Conserv Dent 2014;17(5):467–470. DOI: 10.4103/0972-0707.139844.
  73. Ghoddusi J, Forghani M, Parisay I. New approaches in vital pulp therapy in permanent teeth. Iran Endod J 2014;9(1):15–22.
  74. Silva EJNL, Rosa TP, Herrera DR, et al. Evaluation of cytotoxicity and physicochemical properties of calcium silicate-based endodontic sealer MTA Fillapex. J Endod 2013;39(2):274–277. DOI: 10.1016/j.joen.2012.06.030.
  75. Collado-González M, Tomás-Catalá CJ, Oñate-Sánchez RE, et al. Cytotoxicity of GuttaFlow Bioseal, GuttaFlow2, MTA Fillapex, and AH Plus on human periodontal ligament stem cells. J Endod 2017;43(5):816–822. DOI: 10.1016/j.joen.2017.01.001.
  76. da Silva EJNL, Santos CC, Zaia AA. Long-term cytotoxic effects of contemporary root canal sealers. J Appl Oral Sci 2013;21(1):43–47. DOI: 10.1590/1678-7757201302304.
  77. Demirci M, Hiller K-A, Bosl C, et al. The induction of oxidative stress, cytotoxicity, and genotoxicity by dental adhesives. Dent Mater 2008;24(3):362–371. DOI: 10.1016/j.dental.2007.06.009.
  78. Chang S-W, Lee S-Y, Kang S-K, et al. In vitro biocompatibility, inflammatory response, and osteogenic potential of 4 root canal sealers: Sealapex, Sankin apatite root sealer, MTA Fillapex, and iRoot SP root canal sealer. J Endod 2014;40(10):1642–1648. DOI: 10.1016/j.joen.2014.04.006.
  79. Victoria-Escandell A, Ibañez-Cabellos JS, de Cutanda SB-S, et al. Cellular responses in human dental pulp stem cells treated with three endodontic materials. Stem Cells Int 2017;2017:8920356. DOI: 10.1155/2017/8920356.
  80. Poggio C, Ceci M, Dagna A, et al. In vitro cytotoxicity evaluation of different pulp capping materials: a comparative study. Arh Hig Rada Toksikol 2015;66(3):181–188. DOI: 10.1515/aiht-2015-66- 2589.
  81. Sawicki L, Pameijer CH, Emerich K, et al. Histological evaluation of mineral trioxide aggregate and calcium hydroxide in direct pulp capping of human immature permanent teeth. Am J Dent 2008;21:262–266.
  82. Cavalcanti BN, Rode SM, Marques MM. Cytotoxicity of substances leached or dissolved from pulp capping materials. Int Endod J 2005;38(8):505–509. DOI: 10.1111/j.1365-2591.2005.00967.x.
  83. Asgary S, Eghbal MJ, Parirokh M, et al. A comparative study of histologic response to different pulp capping materials and a novel endodontic cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106(4):609–614. DOI: 10.1016/j.tripleo.2008.06.006.
  84. Kaup M, Dammann CH, Schäfer E, et al. Shear bond strength of biodentine, ProRoot MTA, glass ionomer cement and composite resin on human dentine ex vivo. Head Face Med 2015;11(1):14. DOI: 10.1186/s13005-015-0071-z.
  85. Saberi A, Farhadmollashahi E, Ghotbi N, et al. Cytotoxic effects of mineral trioxide aggregate, calcium enrichedmixture cement, biodentine and octacalcium pohosphate onhuman gingival fibroblasts. J Dent Res Dent Clin Dent Prospects 2016;10(2):75–80. DOI: 10.15171/joddd.2016.012.
  86. Corral Nuñez CM, Bosomworth HJ, Field C, et al. Biodentine and mineral trioxide aggregate induce similar cellular responses in a fibroblast cell line. J Endod 2014;40(3):406–411. DOI: 10.1016/j.joen.2013.11.006.
  87. Köseoğlu S, Pekbağr Yan KT, Kucukyilmaz E, et al. Biological response of commercially available different tricalcium silicate-based cements and pozzolan cement. Microsc Res Tech 2017;80(9):994–999. DOI: 10.1002/jemt.22891.
  88. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review--part III: clinical applications, drawbacks, and mechanism of action. J Endod 2010;36(3):400–413. DOI: 10.1016/j.joen.2009.09.009.
  89. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review--part I: chemical, physical, and antibacterial properties. J Endod 2010;36(1):16–27. DOI: 10.1016/j.joen.2009.09.006.
  90. Torabinejad M, Parirokh M. Mineral trioxide aggregate: a comprehensive literature review--part II: leakage and biocompatibility investigations. J Endod 2010;36(2):190–202. DOI: 10.1016/j.joen.2009.09.010.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.