International Journal of Clinical Pediatric Dentistry

Register      Login

VOLUME 17 , ISSUE 1 ( January, 2024 ) > List of Articles


Antibacterial Properties and Shear Bond Strength of Titanium Dioxide Nanoparticles Incorporated into an Orthodontic Adhesive: A Systematic Review

Mahendra Venkata Durga Tivanani, Vyshnavi Mulakala, Velagala Sai Keerthi

Keywords : Antibacterial, Nanoparticles, Orthodontic adhesive, Shear bond strength, Streptococcus mutans

Citation Information : Tivanani M D, Mulakala V, Keerthi VS. Antibacterial Properties and Shear Bond Strength of Titanium Dioxide Nanoparticles Incorporated into an Orthodontic Adhesive: A Systematic Review. Int J Clin Pediatr Dent 2024; 17 (1):102-108.

DOI: 10.5005/jp-journals-10005-2729

License: CC BY-NC 4.0

Published Online: 14-03-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Objective: The present review was conducted to test whether the addition of titanium dioxide (TiO2) nanoparticles (NPs) within orthodontic bracket adhesives would alter their properties and assess their antimicrobial activity against cariogenic microorganisms in addition to noteworthy mechanical properties. Materials and methods: Using predetermined inclusion criteria, an electronic search was conducted using Dissertations and Thesis Global, the Web of Science, Cochrane, Scopus, and Medline/PubMed. Specific terms were utilized while searching the database. Results: Only seven of the 10 included studies assessed shear bond strength (SBS). The mean SBS among the control group varied from 9.43 ± 3.03 MPa to 34.4 ± 6.7 MPa in the included studies, while in the experimental group, it varied from 6.33 ± 1.51 MPa to 25.05 ± 0.5 MPa. Antibacterial activity was assessed in five of the 10 included studies using TiO2 NPs, which could easily diffuse through bacterial media to form the growth inhibition zone. Conclusion: Antibacterial NPs added to orthodontic adhesives at a concentration of 1–5 wt% inhibit bacterial growth and have no effect on bond strength.

PDF Share
  1. Cantekin K, Celikoglu M, Karadas M, et al. Effects of orthodontic treatment with fixed appliances on oral health status: a comprehensive study. J Dent Sci 2011;6(4):235–238. DOI: 10.1016/j.jds.2011.09.010
  2. Alves PV, Alviano WS, Bolognese AM, et al. Treatment protocol to control Streptococcus mutans level in an orthodontic patient with high caries risk. Am J Orthod Dentofacial Orthop 2008;133(1):91–94. DOI: 10.1016/j.ajodo.2006.03.031
  3. Khoroushi M, Kachuie M. Prevention and treatment of white spot lesions in orthodontic patients. Contemp Clin Dent 2017;8(1):11–19. DOI: 10.4103/ccd.ccd_216_17
  4. Sodagar A, Akhoundi MSA, Bahador A, et al. Effect of TiO2 nanoparticles incorporation on antibacterial properties and shear bond strength of dental composite used in Orthodontics. Dent Press J Orthod 2017;22(5):67–74. DOI: 10.1590/2177-6709.22.5.067-074.oar
  5. Brown MD, Campbell PM, Schneiderman ED, et al. A practice-based evaluation of the prevalence and predisposing etiology of white spot lesions. Angle Orthod 2016;86(2):181–186. DOI: 10.2319/041515-249.1
  6. Lopatiene K, Borisovaite M, Lapenaite E. Prevention and treatment of white spot lesions during and after treatment with fixed orthodontic appliances: a systematic literature review. J Oral Maxillofac Res 2016;7(2):e1. DOI: 10.5037/jomr.2016.7201
  7. Cohen WJ, Wiltshire WA, Dawes C, et al. Long-term in vitro fluoride release and rerelease from orthodontic bonding materials containing fluoride. Am J Orthod Dentofacial Orthop 2003;124(5):571–576. DOI: 10.1016/s0889-5406(03)00573-0
  8. Ashcraft DB, Staley RN, Jakobsen JR. Fluoride release and shear bond strengths of three light-cured glass ionomer cements. Am J Orthod Dentofacial Orthop 1997;111(3):260–265. DOI: 10.1016/s0889-5406(97)70183-5
  9. Priyadarsini S, Mukherjee S, Mishra M. Nanoparticles used in dentistry: a review. J Oral Biol Craniofac Res 2018;8(1):58–67. DOI: 10.1016/j.jobcr.2017.12.004
  10. Haghi M, Hekmatafshar M, Janipour MB, et al. Antibacterial effect of TiO2 nanoparticles on pathogenic strain of E. coli. Int J Adv Biotech Res 2012;3(3):621–624.
  11. Salehi P, Babanouri N, Roein-Peikar M, et al. Long-term antimicrobial assessment of orthodontic brackets coated with nitrogen-doped titanium dioxide against Streptococcus mutans. Prog Orthod 2018;19(1):35. DOI: 10.1186/s40510-018-0236-y
  12. Pourhajibagher M, Sodagar A, Bahador A. An in vitro evaluation of the effects of nanoparticles on shear bond strength and antimicrobial properties of orthodontic adhesives: a systematic review and meta-analysis study. Int Orthod 2020;18(2):203–213. DOI: 10.1016/j.ortho.2020.01.011
  13. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6(7):e1000097. DOI: 10.1371/journal.pmed.1000097
  14. Pandis N, Chung B, Scherer RW, et al. CONSORT 2010 statement: extension checklist for reporting within person randomised trials. BMJ 2017:357. DOI: 10.1136/bmj.j2835
  15. Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev 2019;10(10):ED000142. DOI: 10.1002/14651858.ED000142
  16. Poosti M, Ramazanzadeh B, Zebarjad M, et al. Shear bond strength and antibacterial effects of orthodontic composite containing TiO2 nanoparticles. Eur J Orthod 2013;35(5):676–679. DOI: 10.1093/ejo/cjs073
  17. Reddy AK, Kambalyal PB, Patil SR, et al. Comparative evaluation and influence on shear bond strength of incorporating silver, zinc oxide, and titanium dioxide nanoparticles in orthodontic adhesive. J Orthod Sci 2016;5(4):127–131. DOI: 10.4103/2278-0203.192115
  18. Felemban NH, Ebrahim MI. The influence of adding modified zirconium oxide-titanium dioxide nano-particles on mechanical properties of orthodontic adhesive: an in vitro study. BMC Oral Health 2017;17(1):43. DOI: 10.1186/s12903-017-0332-2
  19. Andriani A, Purwanegara MK. Effect of titanium dioxide nanoparticle addition into orthodontic adhesive resin on enamel microhardness. J Phys Conf Ser 2017;884(1):012115. DOI: 10.1088/1742-6596/884/1/012115
  20. Kambalyal PB, Shanmugasundaram K, Rajesh V, et al. Comparative evaluation of antimicrobial efficacy of silver, titanium dioxide and zinc oxide Nanoparticles against Streptococcus mutans. Pesquisa Brasileira em Odontopediatria e Clínica Integrada 2018;18(1):e4150. DOI: 10.4034/PBOCI.2018.181.88
  21. Behnaz M, Dalaie K, Mirmohammadsadeghi H, et al. Shear bond strength and adhesive remnant index of orthodontic brackets bonded to enamel using adhesive systems mixed with TiO2 nanoparticles. Dent Press J Orthod 2018;23:43.e1–43.e7. DOI: 10.1590/
  22. Moustafa M, El Kady A, Nadim M, et al. Antiibacterial effect of orthodontic adhesive containing titanium dioxide nanoparticles: an experimental animal study. Egypt Orthod J 2018;53:1–11. DOI: 10.21608/eos.2018.77116
  23. Assery MK, Ajwa N, Alshamrani A, et al. Titanium dioxide nanoparticles reinforced experimental resin composite for orthodontic bonding. Mater Res Express 2019;6(12):125098. DOI: 10.1088/2053-1591/ab5a93
  24. Putri WL, Siregar E, Anggani HS. Antibacterial effect of titanium dioxide nanoparticles and chitosan nanoparticles in orthodontic adhesive resin on Streptococcus mutans colony. Dentino Jurnal Kedokteran Gigi 2021;6(1):111–116. DOI: 10.20527/dentino.v6i1.10651
  25. Heravi F, Ramezani M, Poosti M, et al. In vitro cytotoxicity assessment of an orthodontic composite containing titanium-dioxide nano-particles. J Dent Res Dent Clin Dent Prospects 2013;7(4):192–198. DOI: 10.5681/joddd.2013.031
  26. Rosa RS, Balbinot CE, Blando E, et al. Evaluation of mechanical properties on three nanofilled composites. Stomatologija 2012;14(4):126–130. PMID: 23455982.
  27. Bayne SC. Correlation of clinical performance with ‘in vitro tests’ of restorative dental materials that use polymer-based matrices. Dent Mater 2012;28(1):52–71. DOI: 10.1016/
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.