Background: There is a need for innovative remineralizing gel formulations based on calcium and phosphates that can slowly release fluoride ions and enhance the formation of fluorapatite crystals that are more resistant to dissolution in an acidic environment.
Aim: The aim of the work was to formulate a remineralizing agent that remineralizes enamel through the release of Ca2+, PO43−, and F- ions for a prolonged period of time.
Materials and methods: The gel was based on carboxymethyl chitosan (CMC) as a bioinspired gelling agent and on Fluoride-doped Amorphous Calcium Phosphate (F-ACP) as a remineralizing agent. This gel was tested in vitro on the enamel of extracted premolars after demineralization with methacrylic acid gel.
Results: When compared to the control group and demineralized enamel group, the enamel slabs remineralized with CMC/F-ACP showed a higher calcium phosphate ratio in Energy-Dispersive X-ray (EDX) and better surface morphology under scanning electron microscope (SEM).
Conclusion: Remineralization tests performed on demineralized human permanent teeth proved that CMC/F-ACP gel has excellent efficacy, inducing a complete remineralization of the outermost layers of enamel as well as a full restoration of lost mineral content.
Mittal R, Relhan N, Tangri T. Remineralizing agents: a comprehensive review. Int J Clin Prev Dent 2017;13(1):1–4. DOI: 10.15236/ijcpd.2017.13.1.1
Ericson D, Kidd E, McComb D, et al. Minimally invasive dentistry–concepts and techniques in cariology. Oral Health Prev Dent 2003;1(1):59–72.
Cochrane NJ, Cai F, Huq NL, et al. New approaches to enhanced remineralization of tooth enamel. J Dent Res 2010;89(11):1187–1197. DOI: 10.1177/0022034510376046
Philip N. State of the art enamel remineralization systems: the next frontier in caries management. Caries Res 2019;53(3):284–295. DOI: 10.1159/000493031
Lata S, Varghese NO, Varughese JM. Remineralization potential of fluoride and amorphous calcium phosphate-casein phospho peptide on enamel lesions: an in vitro comparative evaluation. J Conserv Dent 2010;13(1):42–46. DOI: 10.4103/0972-0707.62634
Roveri N, Foresti E, Lelli M, et al. Recent advances in preventing teeth health hazard: the daily use of hydroxyapatite instead of fluoride. Recent Pat Biomed Eng 2009;200(3):197–215. DOI: 10.2174/1874764710902030197
Najibfard K, Ramalingam K, Chedjieu I, et al. Remineralisation of early caries by a nano-hydroxyapatite dentifrice. J Clin Dent 2011;22(5):139–143.
Walsh LJ. Contemporary technologies for remineralization therapies: a review. Int Dent SA 2009;11(6):6–16.
Bisla I. Review on role of metal salt in the remineralization of dental caries. Int J Adv Res 2020;8(11):991–1003. DOI: 10.21474/IJAR01/12095
Farooq I, Moheet IA, Imran Z, et al. A review of novel dental caries preventive material: Casein phosphopeptide–amorphous calcium phosphate (CPP–ACP) complex. King Saud University J Dent Sci 2013;4(2):47–51. DOI: 10.1016/j.ksujds.2013.03.004
Iijima Y, Cai F, Shen P, et al. Acid resistance of enamel subsurface lesions remineralized by a sugar-free chewing gum containing casein phosphopeptide amorphous calcium phosphate. Caries Res 2004;38(6):551–556. DOI: 10.1159/000080585
Clarkson BH, Rafter ME. Emerging methods are used in the prevention and repair of carious tissues. J Dent Educ 2001;65(10):1114–1120.
Nimbeni SB, Nimbeni BS, Divakar DD. Role of chitosan in remineralization of enamel and dentin: a systematic review. Int J Clin Pediatr Dent 2021;14(4):562–568. DOI: 10.5005/jp-journals-10005-1971
Iafisco M, Degli Esposti L, Ramírez-Rodríguez GB, et al. Fluoride-doped amorphous calcium phosphate nanoparticles as a promising biomimetic material for dental remineralization. Sci Rep 2018;8(1):17016. DOI: 10.1038/s41598-018-35258-x
Simeonov M, Gussiyska A, Mironova J, et al. Novel hybrid chitosan/calcium phosphates microgels for remineralization of demineralized enamel–a model study. Eur Poly J 2019;119:14–21. DOI: 10.1016/j.eurpolymj.2019.07.005
Narayana SS, Deepa VK, Ahamed S, et al. Remineralization efficiency of bioactive glass on artificially induced carious lesion an in-vitro study. J Indian Soc Pedod Prev Dent 2014;32(1):19–25. DOI: 10.4103/0970-4388.127047
Kamath P, Nayak R, Kamath SU, et al. A comparative evaluation of the remineralization potential of three commercially available remineralizing agents on white spot lesions in primary teeth: an in vitro study. J Indian Soc Pedod Prev Dent 2017;35(3):229–237. DOI: 10.4103/JISPPD.JISPPD_242_16
Chen H, Liu X, Dai J, et al. Effect of remineralizing agents on white spot lesions after orthodontic treatment: a systematic review. Am J Orthod Dentofacial Orthop 2013;143(3):376–382e3. DOI: 10.1016/j.ajodo.2012.10.013
Li J, Xie X, Wang Y, et al. Long-term remineralizing effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on early caries lesions in vivo: a systematic review. J Dent 2014;42(7):769–777. DOI: 10.1016/j.jdent.2014.03.015
Comar LP, Souza BM, Gracindo LF, et al. Impact of experimental nano-HAP pastes on bovine enamel and dentin submitted to a pH cycling model. Braz Dent J 2013;24(3): 273–278. DOI: 10.1590/0103-6440201302175
Enax J, Epple M. Synthetic hydroxyapatite as a biomimetic oral care agent. Oral Health Prev Dent 2018;16(1):7–19. DOI: 10.3290/j.ohpd.a39690
Zhao J, Liu Y, Sun WB, et al. Amorphous calcium phosphate and its application in dentistry. Chem Cent J 2011;5:40. DOI: 10.1186/1752-153X-5-40
Vijayasankari V, Asokan S, GeethaPriya PR. Evaluation of remineralisation potential of experimental nano hydroxyapatite pastes using scanning electron microscope with energy dispersive X-ray analysis: an in-vitro trial. Eur Arch Paediatr Dent 2019;20(6):529–536. DOI: 10.1007/s40368-018-00411-7
Chatzipanagis K, Iafisco M, Roncal-Herrero T, et al. Crystallization of citrate-stabilized amorphous calcium phosphate to nanocrystalline apatite: a surface-mediated transformation. CrystEngComm 2016;18(18):3170–3173. DOI: 10.1039/c6ce00521g
Kmiec M, Pighinelli L, Tedesco MF, et al. Chitosan-properties and applications in dentistry. Adv Tissue Eng Regen Med Open Access 2017;2(4):205–211. DOI: 10.15406/atroa.2017.02.00035
Chen Z. Cao S, Wang H, et al. Biomimetic remineralization of demineralized dentine using scaffold of CMC/ACP nanocomplexes in an in vitro tooth model of deep caries. PloS one 2015;10(1):e0116553. DOI: 10.1371/journal.pone.0116553
Worawongvasu R. A scanning electron microscopic study of enamel surfaces of incipient caries. Ultrastruct Pathol 2015;39(6):408–412. DOI: 10.3109/01913123.2015.1060284
Skucha-Nowak M, Gibas M, Tanasiewicz M, et al. Natural and controlled demineralization for study purposes in minimally invasive dentistry. Adv Clin Exp Med 2015;24(5):891–898. DOI: 10.17219/acem/28903
Degli Esposti L, Ionescu AC, Brambilla E, et al. Characterization of a toothpaste containing bioactive hydroxyapatites and in vitro evaluation of its efficacy to remineralize enamel and to occlude dentinal tubules. Materials (Basel) 2020;13(13):2928. DOI: 10.3390/ma13132928
Scimeca M, Bischetti S, Lamsira HK, et al. Energy Dispersive X-ray (EDX) microanalysis: a powerful tool in biomedical research and diagnosis. Eur J Histochem 2018;62(1):2841. DOI: 10.4081/ejh.2018.2841
Gjorgievska ES, Nicholson JW, Slipper IJ, et al. Remineralization of demineralized enamel by toothpastes: a scanning electron microscopy, energy dispersive X-ray analysis, and three-dimensional stereo-micrographic study. Microsc Microanal 2013;19(3):587–595. DOI: 10.1017/S1431927613000391