International Journal of Clinical Pediatric Dentistry

Register      Login

VOLUME 16 , ISSUE 4 ( July-August, 2023 ) > List of Articles


A Correlation between Clinical Classification of Dental Pulp and Periapical Diseases with its Patho Physiology and Pain Pathway

PV Samir, Niva Mahapatra, Brahmananda Dutta, Rajnish K Verma

Keywords : Inflammation, Pain, Pathway, Pathophysiology, Periapical, Pulp, Pulpitis, Stimulus

Citation Information : Samir P, Mahapatra N, Dutta B, Verma RK. A Correlation between Clinical Classification of Dental Pulp and Periapical Diseases with its Patho Physiology and Pain Pathway. Int J Clin Pediatr Dent 2023; 16 (4):639-644.

DOI: 10.5005/jp-journals-10005-2636

License: CC BY-NC 4.0

Published Online: 11-09-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Background: Dental pain due to pulpal involvement is difficult to diagnose due to the apparent inaccessibility of pulp to the clinical tests, indistinct symptoms, and referred toothache originating from the periodontal tissues. Though we have various clinical classification systems to categorize pulpal diseases, we are yet biased about the exact pathophysiology and pain pathway associated with it. Dental pulp has a complex physiology, and so is its pathophysiology. Aims & objectives: To concisely reviews the basic understanding of the pathophysiology of pulp, pain pathway, and its correlation with the classification of various clinical conditions of pulpal inflammation and periapical diseases. Methodology: Literature search on pulpal diseases and pathophysiology from the sources: MEDLINE, PubMed, Web of Science and Cochrane Databases dated from 1965 till December 2020 was carried on to collect 163 articles. Results: Filtered search on the pathophysiology of pulp, pain pathway, and classification of various clinical conditions of pulpal inflammation resulted us to precise 36 articles required for our understanding and demystifying the correlation. Conclusion: The emphasis should be laid on understanding the minute changes occurring inside the pulp in due course of inflammation to aid its diagnosis and a treatment plan accordingly.

  1. Berkovitz BK, Holland GH, Moxham BJ. Oral Anatomy, Histology and Embryology. 3rd ed. St. Louis, Mosby 2002: pp. 149–167.
  2. Antonio Nanci. Tencate's oral histology development, structure & function. Elseiver 8th ed. 2013:185–187.
  3. Walsh LJ. Serious complications of endodontic infections, some cautionary tales. Aust Dent J 1997;42(3):156–159. DOI: 10.1111/j.1834-7819.1997.tb00113.x
  4. LeJeune HB, Amedee RG. A review of odontogenic infections. J La State Med Soc 1994;146(6):239–241.
  5. Seltzer S, Bender IB. The Dental Pulp. 3rd ed. Philadelphia: JB Lippincott, 1984:281.
  6. Yamamura T. Differentiation of pulpal cells and inductive influences of various matrices with reference to pulpal wound healing. J Dent Res 1985;64:530–540. DOI: 10.1177/002203458506400406
  7. Nie X, Tian W, Zhang Y, et al. Induction of transforming growth factor- beta 1 on dentine pulp cells in different culture patterns. Cell Biol Int 2006;30(4):295–300. DOI: 10.1016/j.cellbi.2005.12.001
  8. Lindén LA, Källskog O, Wolgast M. Human dentine as a hydrogel. Arch Oral Biol 1995;40(11):991–1004. DOI: 10.1016/0003-9969(95)00078-4
  9. Vongsavan N, Matthews B. The permeability of cat dentine in vivo and in vitro. Arch Oral Biol 1991;36(9):641–646. DOI: 10.1016/0003-9969(91)90016-n
  10. Matthews B, Vonsavan N. Interaction between neural and hydrodynamic mechanisms in dentine and pulp. Arch Oral Biol 1994;39 Suppl:887–895. DOI: 10.1016/0003-9969(94)90193-7
  11. Vongsavan N, Matthews B. Fluid flow through cat dentine in vivo. Arch Oral Biol 1992;37(3):175–185. DOI: 10.1016/0003-9969(92)90087-o
  12. Pashley DH, Galloway SE, Stewart F. Effects of fibrinogen in vivo on dentine permeability in the dog. Arch Oral Biol 1984;29(9):725–728. DOI: 10.1016/0003-9969(84)90179-1
  13. Yu C, Abbot PV. An overview of dental pulp: it's functions and responses to injury. Aust Dent J 2007;52(1 Suppl):S4–S16. DOI: 10.1111/j.1834-7819.2007.tb00525.x
  14. Vongsavan N, Matthews B. The vascularity of dental pulp in cats. J Dent Res 1992;71(12):1913–1915. DOI: 10.1177/00220345920710121101
  15. Takahashi K, Kishi Y, Kim S. A scanning electron microscope study of the blood vessels of dog pulp using corrosion resin casts. J Endod 1982;8(3):131–135. DOI: 10.1016/S0099-2399(82)80249-5
  16. Kishi Y, Kai K, Toris H, et al. Vascular architecture of the pulp in human teeth using resin cast examined under SEM. Shika Kiso Igakkai Zasshi 1989;31(1):112–114. DOI: 10.2330/joralbiosci1965.31.112
  17. Kishi Y, Shimozato N, Takahashi K. Vascular architecture of cat pulp using corrosive resin cast under scanning electron microscopy. J Endod 1989;15(10):478–483. DOI: 10.1016/s0099-2399(89)80028-7
  18. Meyer MW. Pulpal blood flow: use of radio-labelled microspheres. Int Endod J 1993;26(1):6–7. DOI: 10.1111/j.1365-2591.1993.tb00527.x
  19. Path MG, Meyer MW. Quantification of pulpal blood flow in developing teeth of dogs. J Dent Res 1977;56(10):1245–1254. DOI: 10.1177/00220345770560102601
  20. Kim S. Microcirculation of the dental pulp in health and disease. J Endod 1985;11(11):465–471. DOI: 10.1016/S0099-2399(85)80219-3
  21. Trowbridge HO, Kim S. Pulp development, structure and function. In: Cohen S, Burns RC, eds. Pathways of the pulp. St. Louis: Mosby, 1998:386–424.
  22. Kim S. Neurovascular interactions in the dental pulp in health and inflammation. J Endod 1990;16(2):48–53. DOI: 10.1016/S0099-2399(06)81563-3
  23. Kim S, Schuessler G, Chien S. Measurement of blood flow in the dental pulp of dogs with the 133xenon washout method. Arch Oral Biol 1983;28(6):501–505. DOI: 10.1016/0003-9969(83)90181-4
  24. Kim S, Lipowsky HH, Usami S, et al. Arteriovenous distribution of hemodynamic parameters in the rat dental pulp. Microvascular Res 1984;27(1):28–38. DOI: 10.1016/0026-2862(84)90039-6
  25. Byers MR, Dong WK. Autoradiographic location of sensory nerve endings in dentin of monkey teeth. Anat Rec 1983;205(4):441–454. DOI: 10.1002/ar.1092050409
  26. Chen NN. A transmission electron microscopy study of early changes in hypoxic pulps. California: Loma Linda University. Thesis.
  27. Byers MR. Dental sensory receptors. Int Rev Neurobiol 1984;25:39–94. DOI: 10.1016/s0074-7742(08)60677-7
  28. Smulson MH, Sieraski SM. Histophysiology and diseases of dental pulp. In: Weine FS, ed. Endodontic therapy. St. Louis; Mosby, 1996:84–165.
  29. Heyeraas KJ, Kim S, Raab WH, et al. Effect of electrical tooth stimulation on blood flow, interstitial fluid pressure and substance P and CGRP-immunoreactive nerve fibres in the low compliant cat dental pulp. Microvascular Res 1994;47(3):329–343. DOI: 10.1006/mvre.1994.1026
  30. Law AS, Baumgardner KR, Meller ST, et al. Localization and changes in NADPH- diaphorase reactivity and nitric oxide synthase immunoreactivity in rat pulp following tooth preparation. J Dent Res 1999;78(10):1585–1595. DOI: 10.1177/00220345990780100301
  31. Kerezoudis NP, Olgart L, Fried K. Localization of NADPH-diaphorase activity in the dental pulp, periodontium and alveolar bone of the rat. Histochemistry 1993;100(4):319–322. DOI: 10.1007/BF00270053
  32. Tønder KJ, Kvinnsland I. Micropuncture measurements of interstitial fluid pressure in normal and inflammed dental pulp in cats. J Endod 1983;9(3):105–109. DOI: 10.1016/S0099-2399(83)80106-X
  33. Heyeraas KJ, Berggreen E. Interstitial fluid pressure in normal and inflammed pulp. Crit Rev Oral Biol Med 1999;10(3):328–336. DOI: 10.1177/10454411990100030501
  34. Abbott P, Yu C. A clinical classification of the status of the pulp and the root canal system. Aust Dent J 2007;52(1 Suppl):S17–S31. DOI: 10.1111/j.1834-7819.2007.tb00522.x
  35. Torabinejad M. Pulp and periradicular pathosis. In: Walton RE, Torabinejad M eds. Principles and practice of endodontics. 3rd ed. Philadelphia: WB Saunders Co., 2002:34–37.
  36. Massler M. Pulpal reactions to dental caries. Int Dent J 1967;17(2):441–460.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.