Citation Information :
Jajoo SS, Chaudhary SM, Patil K. A Systematic Review on Polyester Scaffolds in Dental Three-dimensional Cell Printing: Transferring Art from the Laboratories to the Clinics. Int J Clin Pediatr Dent 2023; 16 (3):494-498.
Objective: The purpose of this systematic review is to describe developments in three-dimensional (3D) cell printing in the formation of dental pulp tissue using polyester as a scaffold to revitalize the damaged dental pulp tissue.
Materials and methods: A literature search for all the data published in PubMed and Google Scholar from January 2000 to April 2022 was conducted. Articles with the keywords 3D cell printing, scaffolds, polyester, dental pulp, and dentistry were used. Inclusion criteria consisted of any publication in electronic or print media directly studying or commenting on the use of polyester scaffolds in 3D cell printing technology in the regeneration of dental pulp. A total of 528 articles were selected, of which 27 duplicates and 286 irrelevant articles were discarded. A total of 215 articles were finally included in the systematic review.
Result and conclusion: For dental pulp regeneration, several scaffolds have been discovered to be appealing. Polylactic acid (PLA), polyglycolic acid (PGA), and their copolymers are nontoxic and biocompatible synthetic polyesters that degrade by hydrolysis and have received Food and Drug Administration (FDA) approval for a variety of applications. This review paper is intended to spark new ideas for using a certain scaffold in a specific regenerative approach to produce the desired pulp-dentin complex.
Barron JA, Krizman DB, Ringeisen BR. Laser printing of single cells: statistical analysis, cell viability, and stress. Ann Biomed Eng 2005;33(2):121–130. DOI: 10.1007/s10439-005-8971-x
Barazanchi A, Li KC, Al-Amleh B, et al. Additive technology: update on current materials and applications in dentistry. J Prosthodont 2017;26(2):156–163. DOI: 10.1111/jopr.12510
Alharbi N, Alharbi S, Cuijpers VMJI, et al. Three-dimensional evaluation of marginal and internal fit of 3D-printed interim restorations fabricated on different finish line designs. J Prosthodont Res 2018;62(2):218–226. DOI: 10.1016/j.jpor.2017.09.002
Matai I, Kaur G, Seyedsalehi A, et al. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 2020;226:119536. DOI: 10.1016/j.biomaterials.2019.119536
Sun W, Starly B, Daly A, et al. The bioprinting roadmap. Biofabrication. 2020;12(2):022002. DOI: 10.1088/1758-5090/ab5158
Hussain et al. 2015;Qasim et al. 2019;Javaid and Haleem 2019a, 2019b; Haleem and Javaid 2019.7 N. D. Evans, E. Gentleman, and J. M. Polak, ”Scaffolds for stem cells,” Materials Today, vol. 9, no. 12, pp. 26–33, 2006.
Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE. Scaffold design for bone regeneration. J Nanosci Nanotechnol 2014;14(1):15–56. DOI: 10.1166/jnn.2014.9127
Graziano A, d’Aquino R, Cusella-De Angelis MG, et al. Scaffold's surface geometry significantly affects human stem cell bone tissue engineering. J Cell Physiol 2008;214(1):166–172. DOI: 10.1002/jcp.21175
Villar CC, Cochran DL. Regeneration of periodontal tissues: guided tissue regeneration. Dent Clin North Am 2010;54(1):73–92. DOI: 10.1016/j.cden.2009.08.011
Sakai VT, Zhang Z, Dong Z, et al. SHED differentiate into functional odontoblasts and endothelium. J Dent Res 2010;89(8):791–796. DOI: 10.1177/0022034510368647
Chen M, Le DQ, Baatrup A, et al. Self-assembled composite matrix in a hierarchical 3-D scaffold for bone tissue engineering. Acta Biomater 2011;7(5):2244–2255. DOI: 10.1016/j.actbio.2010.12.031
Peter SJ, Miller MJ, Yasko AW, et al. Polymer concepts in tissue engineering. J Biomed Mater Res 1998;43(4):422–427. DOI: 10.1002/(sici)1097-4636(199824)43:4<422::aid-jbm9>3.0.co;2-1
Pilipchuk SP, Plonka AB, Monje A, et al. Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dental Materials 2015;31(4):317–338. DOI: 10.1016/j.dental.2015.01.006
Gentile P, Chiono V, Carmagnola I, et al. An overview of poly(lactic-co-glycolic) acid (PLGA)—based biomaterials for bone tissue engineering. Int J Mol Sci 2014;15(3):3640–3659. DOI: 10.3390/ijms15033640
Park JH, Schwartz Z, Olivares-Navarrete R, et al. Enhancement of surface wettability via the modification of microtextured titanium implant surfaces with polyelectrolytes. Langmuir 2011;27(10):5967–5985. DOI: 10.1021/la2000415
Pomeroy JE, Helfer A, Bursac N. Biomaterializing the promise of cardiac tissue engineering. Biotechnol Adv 2020;42:107353. DOI: 10.1016/j.biotechadv.2019.02.009
Edgar L, McNamara K, Wong T, et al. Heterogeneity of scaffold biomaterials in tissue engineering. Materials (Basel) 2016;9(5):332. DOI: 10.3390/ma9050332
Shekhter AB, Fayzullin AL, Vukolova MN, et al. Medical applications of collagen and collagen-based materials. Curr Med Chem 2019;26(3):506–516. DOI: 10.2174/0929867325666171205170339
Mano JF, Vaz CM, Mendes SC, et al. Dynamic mechanical properties of hydroxyapatite-reinforced and porous starch-based degradable biomaterials. J Mater Sci 1999;10(12):857–862. DOI: 10.1023/a:1008916901009
Boontheekul T, Kong HJ, Mooney DJ. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials 2005;26(15):2455–2465. DOI: 10.1016/j.biomaterials.2004.06.044
Hargreaves KM, Law AS. Regenerative endodontics. In: Hargreaves KM, Cohen S, editors. In: Hargreaves KM, Cohen S, editors. Cohen's Pathways of the Pulp. 10th ed. St. Louis, Mo.: Mosby Elsevier; 2011. pp. 602–619.
Mao JJ, Kim SG, Zhou J, et al. Regenerative endodontics: Barriers and strategies for clinical translation. Dent Clin North Am 2012;56(3):639–649. DOI: 10.1016/j.cden.2012.05.005
Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 2003;5:1–16. DOI: 10.22203/ecm.v005a01
Galler KM. Scaffolds for pulp regeneration and repair. In:Goldberg M, editor. The Dental Pulp: Biology, Pathology, and Regenerative Therapies. Germany: Springer; 2014
Huang GT, Yamaza T, Shea LD, et al. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng Part A 2010;16(2):605–615. DOI: 10.1089/ten.TEA.2009.0518
Singhal AR, Agrawal CM, Athanasiou KA. Salient degradation features of a 50:50 PLA/PGA scaffold for tissue engineering. Tissue Eng 1996;2(3):197–207. DOI: 10.1089/ten.1996.2.197
Horst OV, Chavez MG, Jheon AH, et al. Stem cell and biomaterials research in dental tissue engineering and regeneration. Dent Clin North Am 2012;56(3):495–520. DOI: 10.1016/j.cden.2012.05.009
Gebhardt M, Murray PE, Namerow KN, et al. Cell survival within pulp and periodontal constructs. J Endod 2009;35(1):63–66. DOI: 10.1016/j.joen.2008.09.020
Woo KM, Chen VJ, Jung HM, et al. Comparative evaluation of nanofibrous scaffolding for bone regeneration in critical-size calvarial defects. Tissue Eng Part A 2009;15(8):2155–2162. DOI: 10.1089/ten.tea.2008.0433
Wang J, Liu X, Jin X, et al. The odontogenic differentiation of human dental pulp stem cells on nanofibrous poly(l-lactic acid) scaffolds in vitro and in vivo. Acta Biomater 2010;6(10):3856–3863. DOI: 10.1016/j.actbio.2010.04.009
Prescott RS, Alsanea R, Fayad MI, et al. In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice. J Endod 2008;34(4):421–426. DOI: 10.1016/j.joen.2008.02.005
Bezwada RS, Jamiolkowski DD, Lee IY. Monocryl suture, a new ultra-pliable absorbable monofilament suture. Biomaterials 1995;16(15):1141–1148. DOI: 10.1016/0142-9612(95)93577-z
Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 1997;28(1):5–24. DOI: 10.1016/s0169-409x(97)00048-3
Tanataweethum N, Liu WC, Goebel WS, et al. Fabrication of Poly-l-lactic acid/dicalcium phosphate dihydrate composite scaffolds with high mechanical strength—implications for bone tissue engineering. J Funct Biomater 2015;6(4):1036–1053. DOI: 10.3390/jfb6041036
Cao H, Kuboyama N. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Bone 2010;46(2):386–395. DOI: 10.1016/j.bone.2009.09.031
Rezwan K, Chen QZ, Blaker JJ, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006;27(18):3413–3431. DOI: 10.1016/j.biomaterials.2006.01.039
S Willerth and S, Sakiyama-Elbert. ”Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery,” in StemBook. SWillerth and S Sakiyama-Elbert, Eds., Harvard Stem Cell Institute, Cambridge, UK, 2008.
Zhu J, Marchant RE. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 2011;8(5):607–626. DOI: 10.1586/erd.11.27
Shekaran A, Garcia JR, Clark AY, et al. Bone regeneration using an alpha 2 beta 1 integrin-specific hydrogel as a BMP-2 delivery vehicle. Biomaterials 2014;35(21):5453–5461. DOI: 10.1016/j.biomaterials.2014.03.055
Yang F, Williams CG, Wang DA, et al. The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials 2005;26(30):5991–5998. DOI: 10.1016/j.biomaterials.2005.03.018
Singh RK, Seliktar D, Putnam AJ. Capillary morphogenesis in PEG-collagen hydrogels. Biomaterials 2013;34(37):9331–9340. DOI: 10.1016/j.biomaterials.2013.08.016
Leach JB, Schmidt CE. Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds. Biomaterials 2005;26(2):125–135. DOI: 10.1016/j.biomaterials.2004.02.018
Olsson H, Petersson K, Rohlin M. Formation of a hard tissue barrier after pulp cappings in humans. A systematic review. Int Endod J 2006;39(6):429–442. DOI: 10.1111/j.1365-2591.2006.01116.x
Gloria A, De Santis R, Ambrosio L. Polymer-based composite scaffolds for tissue engineering. J Appl Biomater Biomech 2010;8(2):57–67.
Glowacki J, Mizuno S. Collagen scaffolds for tissue engineering. Biopolymers 2008;89(5):338–344. DOI: 10.1002/bip.20871
Chan G, Mooney DJ. New materials for tissue engineering: towards greater control over the biological response. Trends Biotechnol 2008;26(7):382–392. DOI: 10.1016/j.tibtech.2008.03.011
Jiang T, Kumbar SG, Nair LS, et al. Biologically active chitosan systems for tissue engineering and regenerative medicine. Curr Top Med Chem 2008;8(4):354–364. DOI: 10.2174/156802608783790974