International Journal of Clinical Pediatric Dentistry

Register      Login

VOLUME 12 , ISSUE 2 ( March-April, 2019 ) > List of Articles

REVIEW ARTICLE

Recent Advances in Dental Hard Tissue Remineralization: A Review of Literature

Mando K Arifa, Rena Ephraim, Thiruman Rajamani

Keywords : Nanoparticles, Polydopamine, Recent advances, Remineralizaion

Citation Information : Arifa MK, Ephraim R, Rajamani T. Recent Advances in Dental Hard Tissue Remineralization: A Review of Literature. Int J Clin Pediatr Dent 2019; 12 (2):139-144.

DOI: 10.5005/jp-journals-10005-1603

License: CC BY-NC 4.0

Published Online: 00-04-2019

Copyright Statement:  Copyright © 2019; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

The dental caries is not simply a continuous and unidirectional process of the demineralization of the mineral phase, but a cyclic event with periods of demineralizations and remineralisation. The remineralization process is a natural repair mechanism to restore the minerals again, in ionic forms, to the hydroxyapatite (HAP) crystal lattice. It occurs under near-neutral physiological pH conditions whereby calcium and phosphate mineral ions are redeposited within the caries lesion from saliva and plaque fluid resulting in the formation of newer HAP crystals, which are larger and more resistant to acid dissolution. Numerous types of remineralizing agents and remineralizing techniques have been researched and many of them are being used clinically, with significantly predictable positive results. The recent researches on remineralization are based on biomimetic remineralization materials, having the capability to create apatite crystals within the completely demineralized collagen fibers.


PDF Share
  1. Edelstein B. The dental caries pandemic and disparities problem. BMC Oral Health 2006;6(1):S1–S2. DOI: 10.1186/1472-6831-6-S1-S2.
  2. Berkowitz RJ, Turner J, et al. Maternal salivary levels of Streptococcus mutans and primary oral infection of infants. Arch Oral Biol 1981;26:147–149. DOI: 10.1016/0003-9969(81)90086-8.
  3. Caufield PQ, Cutter GR, et al. Initial acquisition of mutans streptococci by infants: evidence for a discrete window of infectivity. J Dent Res 1993;72:37–45. DOI: 10.1177/00220345930720010501.
  4. Carounanidy U, Sathyanarayanan R. Dental caries: a complete changeover (part I). J Conserv Dent 2009;12(2):46–54. DOI: 10.4103/0972-0707.55617.
  5. Robinson C, Shore RC, et al. The chemistry of enamel caries. Crit Rev Oral Biol Med 2000;11(4):481–495. DOI: 10.1177/10454411000110040601.
  6. Hemagaran G. Remineralisation of the tooth structure—the future of dentistry. Int J Pharm Tech Res 2014;6(2):487–493.
  7. Naveena Preethi P, Nagarathana C, et al. Remineralising agent—then and now—an update. Remineralising agent—then and now—an update. Dentistry 2014;4(9):1–5.
  8. Zhang X, Deng X, et al. Remineralising Nanomaterials for Minimally Invasive Dentistry. Chapter Nanotechnology in Endodontics: Current and Potential Clinical Applications. Switzerland: Springer International Publishing; 2015. pp. 173–193.
  9. Amaechi BT, Loveren Monogr CV. Fluorides and non-fluoride remineralisation systems. Monogr Oral Sci 2013;23:15–26. DOI: 10.1159/000350458.
  10. Peter S. Essentials of public health dentistry, 5th edn; 2013.
  11. Zhao J, Liu Y, et al. Amorphous calcium phosphate and its application in dentistry chemistry. Cent J 2011;5(40):2–7.
  12. Tung MS, Eichmiller FC. Dental applications of amorphous calcium phosphates. J Clin Dent 1999;10:1–6.
  13. Reynolds EC. Retention in plaque and remineralisation of enamel lesions by—various forms of calcium in a mouthrinse or sugarfree chewing gum. J Dent Res March 2003;82(3):206–211. DOI: 10.1177/154405910308200311.
  14. Moradian-Oldak J. Amelogenins: assembly, processing and control of crystal morphology. Matrix Biol 2001;20:293–305. DOI: 10.1016/S0945-053X(01)00154-8.
  15. Soi S, Vinayak V, et al. Fluorides and their role in demineralisation and remineralisation. J Dent Sci Oral Rehabil 2013 July–Sep;19–21.
  16. Duckworth RM. Pharmacokinetics in the oral cavity: fluoride and other active ingredients; in van Loveren C: toothpastes. Monogr Oral Sci 2013;23:121–135.
  17. Fowler C, Wilson R, et al. In vitro microhardness studies on a new anti-erosion desensitizing toothpaste. J Clin Dent 2006;17:100–105.
  18. Pradubboon SS, Hamba H, et al. Sodium fluoride mouthrinse used twice daily increased incipient caries lesion remineralisation in an otu model. J Dent March 2014;42(3):271–278. DOI: 10.1016/j.jdent.2013.12.012.
  19. Mehta A, Paramshivam G, et al. Effect of light-curable fluoride varnish on enamel demineralisation adjacent to orthodontic brackets: an in vivo study. Am J Orthod Dentofacial Orthop 2015;148(5):814–820. DOI: 10.1016/j.ajodo.2015.05.022.
  20. Li X. The remineralisation of enamel: a review of the literature. J Dent 2014;42:S12–S20. DOI: 10.1016/S0300-5712(14)50003-6.
  21. Walsh LJ. Contemporary technologies for remineralisation therapies: a review. Int Dent 2009;11(6):6–16.
  22. Kalra DD, Kalra RD, et al. Non fluoride remineralisation: an evidencebased review of contemporary technologies. J Dent Allied Sci 2014;3(1):24–33.
  23. Bennett T, van AC, et al. Fluorides and non-fluoride remineralisation systems. Monogr Oral Sci 2013;23:15–26. DOI: 10.1159/000350458.
  24. Skrtic D, Antonucci JM, et al. Effect of the monomer and filler system on the remineralising potential of bioactive dental composites based on amorphous calcium phosphate. Polym Adv Technol 2001;12: 369–379.
  25. Prestes L, Souza BM, et al. In situ effect of chewing gum containing CPP–ACP on the mineral precipitation of eroded bovine enamel: a surface hardness analysis. J Denti 2013;41(8):747–751. DOI: 10.1016/j.jdent.2013.06.006.
  26. Oliveira P, Fonseca A, et al. Remineralising potential of CPP–ACP creams with and without fluoride in artificial enamel lesions. Aust Dent J 2016;61:45–52. DOI: 10.1111/adj.12305.
  27. Mony B, Ebenezar ABR, et al. Effect of chicken egg shell powder solution on early enamel carious lesions: an in vitro preliminary study. J Clin Diagn Res 2015;9(3):ZC30–ZC32. DOI: 10.7860/JCDR/2015/11404.5656.
  28. Sargod SS, Bhat SS, et al. Remineralisation potential using calcium sucrose phosphate (enafix) on artificial carious lesion—a polaroid microscopic study. Ind J Appl Res 2015;5(1):421–423.
  29. Julian RJ. Review of bioactive glass: from Hench to hybrids. Acta Biomater 2013;9:4457–4486. DOI: 10.1016/j.actbio.2012.08.023.
  30. Andersson OH, Kangasniemi I. Calcium phosphate formation at the surface of bioactive glass in vitro. J Biomed Mater Res 1991;25:1019–1030.
  31. Earl JS, Leary RK, et al. Physical and chemical characterization of dentin surface, following treatment with NovaMin technology. J Clin Dent 2011;22:2–67.
  32. Hench LL, West JK. Biological applications of bioactive glasses. Life Chem Rep 1996;13:187–241.
  33. Chole D, Jadhav Y, et al. Remineralising agents: minimal invasive therapy a review. J Dent Med Sci 2016;15(2):64–68. DOI: 10.9790/0853- 150786472.
  34. Dong Z, Zhou C. Particle size of 45S5 bioactive glass affected the enamel remineralisation. Mater Sci forum 2014;815:396–400. DOI: 10.4028/www.scientific.net/MSF.815.396.
  35. Greenspan DC. NovaMin® and tooth sensitivity—an overview. J Clin Dent 2010;21:61–65.
  36. Amin M, Mehta R, et al. Evaluation of the efficacy of commercially available nano-hydroxyapatite paste as a desensitising agent. Adv Oral Biol 2015;5(1):34–38.
  37. Amaechi BT, Mathews SM, et al. Effect of theobromine containing tooth paste on dentin tubule occlusion in situ. Clin Oral Invest 2015;19(1):109–116. DOI: 10.1007/s00784-014-1226-1.
  38. Sheng X-Y, Gong W-Y, et al. Mineral formation on dentin induced by nano-bioactive glass. CCL 2016;27(9):1509–1514.
  39. Makinen K. Sugaralcohols. Caries incidence and remineralisation of caries lesions, a literature review. Int J Dent 2010; 981072.
  40. Milburn JL, Henrichs LE, et al. Substantive fluoride release from a new fluoride varnish containing CXP™. Dentistry 2015;5(12):1–6. DOI: 10.4172/2161-1122.1000350.
  41. Brown JP, Amaechi BT, et al. Visual scoring of non cavitated caries lesions and clinical trial efficiency, testing xylitol in caries-active adults. Community Dent Oral Epidemiol 2014;42:271–27. DOI: 10.1111/cdoe.12082.
  42. Niu L, Zhang W, et al. Biomimetic remineralisation of dentin. Dent Mater 2014;30:77–96.
  43. Zhou YZ, Cao Y, et al. Polydopamine-induced tooth remineralisation. ACS Appl Mater Interfaces 2012;4:6901–6910. DOI: 10.1021/am302041b.
  44. Benjamin S, Sharma R, et al. Grape seed extract as a potential remineralising agent: a comparative in vitro study. J Contemp Dent Pract 2012;13(4):425–430.
  45. Epasinghe D, Yiu C, et al. Synergistic effect of proanthocyanidin and CPP-ACFP on remineralisation of artificial root caries. Aust Dent J 2015;60(4):463–470. DOI: 10.1111/adj.12249.
  46. Amaechi BT. Remineralisation therapies for initial caries lesions. Curr Oral Health Rep June 2015;2(2):95–101. DOI: 10.1007/s40496-015- 0048-9.
  47. Wu XT, Mei ML, et al. A direct electric field aided bio mineralisation system for inducing the remineralisation. Materials 2015;8(11): 7889–7899. DOI: 10.3390/ma8115433.
  48. Chen L. Biomimetic remineralisation of human enamel in the presence of polyamidoamine dendrimers in vitro. Caries Res 2015;49:282–290. DOI: 10.1159/000375376.
  49. Amaechi BT, Porteous N, et al. Remineralisation of artificial enamel lesions by theobromine. Caries Res 2013;47:399–405. DOI: 10.1159/000348589.
  50. Syafira G, Permatasari R, et al. Theobromine effects on enamel surface microhardness: in vitro. J Dent Indones 2012;19(2):32–36.
  51. Nasution A, Zawill C. The comparison of enamel hardness between fluoride and theobromine application. Int J Contemp Dent Med Rev 2014; 031214.
  52. Cheng X, Xu P, et al. Arginine promotes fluoride uptake into artificial carious lesions in vitro. Aust Dent J 2015;60(1):104–111. DOI: 10.1111/adj.12278.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.